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Many robotic tasks require knowledge of the exact 3D robot geometry.
However, this remains extremely challenging in soft robotics because of the
infinite degrees of freedom of soft bodies deriving from their continuum

characteristics. Previous studies have achieved only low proprioceptive
geometry resolution (PGR), thus suffering from loss of geometric details
(for example, local deformation and surface information) and limited
applicability. Here we report an intelligent stretchable capacitive e-skin to
endow soft robots with high PGR (3,900) bodily awareness. We demonstrate
that the proposed e-skin can finely capture a wide range of complex

3D deformations across the entire soft body through multi-position
capacitance measurements. The e-skin signals can be directly translated
to high-density point clouds portraying the complete geometry viaadeep
architecture based on transformer. This high PGR proprioception system
providing millimetre-scale, local and global geometry reconstruction
(2.322 £ 0.687 mmerrorona20 x 20 x 200 mm soft manipulator) can
assistin solving fundamental problems in soft robotics, such as precise
closed-loop control and digital twin modelling.

The neuro-proprioceptive system of animals mediates the perception
of the body’s geometry, constituting the prerequisite for precise and
fast limb coordination during locomotion and interaction with the
environment’. Similarly, the dexterous manipulation of intelligent
robots relies on the body’s geometry estimation from the artificial
proprioception system. Within the frame of conventional rigid robots,
existing sensing technology already provides viable solutions toimple-
menting body’s geometry estimation that meets the requirements of
even the most agile and complex robotic platforms. This is due to the
inherent predictability of the rigid-body system, whose finite degrees
of freedom allow the full geometry to be defined by abounded set of
measurable parameters (such asjoint angle and link length). However,
the development of artificial proprioception systems for highly deform-
ablestructures, such as soft robots, remains afundamental challenge,

severely restricting the understanding of soft robot behaviour and,
ultimately, the capability to perform precise closed-loop control®?.
The highly deformable nature of soft robots represents their asset
as well as their drawback. The bodily compliance of soft robots may
provide an answer to the limits of conventional robots with respect
to safety, adaptability and operational flexibility*®, thus highlight-
ing their spontaneous vocation for biomedical applications®® and
human-robot interaction’ ™ as well as their employment in unstruc-
tured, potentially cluttered scenarios. However, this very feature
also gives infinite degrees of freedom to a soft body. It is infeasible
to completely describe the three-dimensional (3D) morphology of
a soft system with only a limited set of parameters*'?. The number
of independent parameters used by a soft proprioception system to
describe the body geometry determines the smallest size of geometric
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variations that can theoretically be detected and presented by the
system. Generally, the greater the number of independent parameters,
thefinerand more accurate the geometric variations can be described.
Therefore, we define the number of such independent parameters as
the proprioceptive geometry resolution (PGR). Soft proprioception
systems with higher PGR are desirable for soft robotics as they can
endow soft systems with bodily awareness more comparable to that
of rigid robots, thus enabling more natural interaction with humans
(for example, real-time 3D geometry of a soft robot can be visually
observed without the line of sight, allowing users to operate robots
intuitively evenin occlusion environments) and underpinning precise
closed-loop control.

To the best of our knowledge, there is no off-the-shelf high PGR
soft proprioception system. Previous studies are focused on low PGR
proprioception, limiting their capability to preserve geometric details
(for example, local deformation and surface information) and their
usage in practical application scenarios (for detailed comparison,
see Supplementary Table 1)>'*°, For example, combined with the
mathematical model of the soft robot under investigation, an optical
fibre-based proprioception system can successfully reconstruct the
3D geometry on the basis of two parameters', that is, global bending
and twisting angles (PGR 2). However, the low PGR fails to describe
local geometric variations (for example, bending of arobot segment)
and is applicable only to a fixed bending direction and twisting axis
(Supplementary Fig. 1). Some recent studies attempt to build soft
proprioception systems with higher PGR by optimizing sensor design,
introducing advanced machine learning algorithms (for example,
long short-term memory (LSTM) networks) and employing 3D motion
capture devices (for example, tracking cameras)®'>". Redundant poly-
dimethylsiloxane (PDMS) impregnated with conductive carbonnano-
tubes (cPDMS) sensors with LSTM can estimate 3D coordinates of a
soft fingertip (PGR 3)"2. The simplified 3D geometry (described by nine
parameters) of atrunk-shaped soft robot can be recovered through 12
conductive silicone-based piezoresistive sensors distributed on the
robot body (PGR 9)°. The 3D deformation of a four-chamber pneu-
matic membrane (described by 49 visual markers) is reconstructed
using LSTM and integrated optical sensors (PGR 147)". Despite these
recent advances, obtaining high PGR across a wide range of complex
deformations remains unrealized.

In this Article, we propose a high PGR (3,900) proprioception
system to confer full-geometry, millimetre-level bodily awareness to
soft robots. The proprioception system encapsulates an intrinsically
stretchable capacitive e-skin (SCAS) and a purpose-designed neural
architecture (that is, the capacitance-to-deformation transformer,
C2DT). Inspired by 3D electrical capacitance tomography (ECT) 7,
the SCAS has four different functional layers (Fig. 1a) and employs a
redundant planar skinelectrode layout (Fig. 1a,b) that forms asequence
of capacitors sensitive to deformations across distal and proximal
locations, allowing it to detect geometric variations across the entire
soft body. The C2DT based on self-attention mechanism ** explores
the dependency over the e-skin signals and directly translates the
measurements to the point cloud of the morphology (Fig. 1c). The
synergistic combination of the SCAS and C2DT can achieve accurate
(2.322 £ 0.687 mmerrorona 20 x 20 x 200 mm soft manipulator) and
high PGR (3,900; 1,300 points in each point cloud) 3D shape recon-
struction under complex deformations, which is one or two orders
of magnitude improvement over previous methods (for comparison,
see Supplementary Table 1). The proposed system does not require
mathematical modelling of the robot under investigation. Therefore,
it theoretically should be agnostic to the shape of the soft body and
has the potential to be extended to soft robotic platforms with an
unprescribed morphology. This high PGR proprioception capability
canassistinsolving the most fundamental challengesin soft robotics,
suchas precise closed-loop controlin complex tasks, thereby facilitat-
ing their widespread adoption.

Results

Design of the e-skin in virtual environment

Different from conventional parallel capacitive sensors frequently
used inmany previous studies®’®, the design of SCAS is inspired by 3D
ECT sensor and its sensing strategy?. 3D ECT has demonstrated that
the capacitance readout of aboundary electrode pair is related to the
permittivity of the medium within the sensitive region andits geometry.
In soft robot proprioception, the permittivity remains constant. The
change of capacitance primarily reflects geometric variations and,
therefore, can be used to infer local and global deformations.

Wefirst designthe SCASinthe virtual environment and quantify its
performance, beforeits physicalimplementation. The virtual SCAS has
aredundantlayout of planar stretchable electrodes (the 64-electrode
SCAS) tocharacterize the 3D deformation of the entire soft body (Sup-
plementary Fig. 2). Weimplement 3D solid mechanics and electrostat-
ics coupling field (3D-SECF) simulation to simultaneously model the
e-skin response and soft body deformation. Considering the need to
test the broadest range of possible deformations that are not achiev-
ableinafullyinternally actuated system, we adopt asquare cylindrical
soft manipulator actuated by external forces as the testbed. Supple-
mentary Fig. 2a shows the geometric structure and electrode layout
of the 3D-SECF model.

Anytwo SCAS electrodes canformacapacitor, and the capacitance
is sensitive to electrode deformations. The 64-electrode SCAS can
theoretically produce 2,016 independent capacitance readoutsin one
measurement frame (select two electrodes to form a capacitor, that s,
624 = 2,016). Werecord only capacitances formed by electrodesin the
same layer and those between two adjacent layers to ensure that they
are practically measurable. Each SCAS measurement frame comprises
392 independent capacitance readouts (for measurement strategy
details, see ‘Solid mechanics and electrostatics coupling field simula-
tion’in Methods and Supplementary Fig. 2). We argue that capacitances
formed by these non-redundant combinations of SCAS electrodes
contain sufficientinformation to portray full-geometry deformations
as their receptive fields cover the entire soft body.

Dynamic 3D-SECF simulation allows to mimic a wide range of
deformations and corresponding e-skin responses. We therefore gen-
erate a large-scale virtual proprioception dataset containing 39,334
samples (for details, see ‘Solid mechanics and electrostatics coupling
field simulation’in Methods). Each sample consists of a3D point cloud
with 1,716 points representing the deformation and corresponding
392 capacitance readouts. The deformations are driven by different
external force loads, which can be divided into four different catego-
ries according to the types of external force loads, that is, the com-
pound deformation of elongation and twisting L, ,, purebending L, ,,
two-phase twisting and bending L, ,, and the compound deforma-
tion of twistingandbendingL,, ,, ,. Simulation results show that SCAS
signals can reflect the soft robot geometric variation under various
complex deformations (Supplementary Fig. 3), indicating its feasibility
asproprioceptors. We then leverage the virtual proprioception dataset
to quantify the SCAS performancein high PGR full-geometry 3D defor-
mation reconstruction. The results are utilized to optimize the design
of the physical SCAS and learning-based proprioception algorithms.

C2DT

We employ 3D dense point clouds to represent the full-geometry
morphology of the soft robot arm. We then consider deformation
reconstruction as a set-to-set problem, mapping a SCAS signal set
consisting of 392 capacitance readouts to its corresponding point set
(apoint cloud) in 3D space. Therefore, we propose a C2DT based on
self-attention mechanism? that is widespread in natural language pro-
cessing®?* and computer vision®?® and shows superior performance
in solving set-to-set problems. The framework of the C2DT is shown
in Fig. 2a. C2DT infers the displacement of each point in the source
point cloud (the one without deformation) from the proprioceptive
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Fig.1| Design of the SCAS and the pipeline for full-geometry, high PGR 3D
deformation reconstruction of soft robots. a, The entire SCAS that can cover
the whole soft robot arm consist of multiple SCAS modules. Each module has four
functionallayers, that s, the protective substrate (0.39 mm), the electrode layer
(0.08 mm), theisolation layer (0.24 mm) and the sealing layer (0.3 mm). The soft
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canformasequence of capacitors. Geometric variations in the proximity of

the electrode pair lead to the change in the corresponding capacitance. The
readout electronics can record capacitance values of a selected set of electrode
pairs atapproximately 30 fps. b, Snapshots of the soft arm in different states
(undeformed, twisting and the compound deformation of bending and twisting).
¢, Data collected by the readout electronics are fed into a deep net and translated
to a high PGR representation (point cloud) of the 3D robot shape.

information contained in SCAS signals. Given characteristics of electric
field distribution, we hypothesize that capacitances from different
electrode pairs convey different geometrical structure information.
This is critical for the network to effectively distil discriminative pro-
prioceptive representations from capacitance readouts”. We therefore
design a special position encoding process in the C2DT to generate
geometrical representations based on positions of individual electrode
pairs (for more details, see Methods).

Wetraina C2DT using the virtual proprioception dataset by mini-
mizing the loss function consisting of the squared distance term of
visual markers (of which point-to-point correspondences are known)
and the Chamfer distance (CD) term of the remaining points (of which
point-to-point correspondences are unknown); for details of the loss
function, visual markers and training, see Methods. The reconstruc-
tion results show superior PGR (that is, 5,148; 1,716 points represent
the 3D geometry of the robot), accuracy (that is, 1.379 + 1.048 mm;

Supplementary Table 2) and are able to capture the whole range of
complex deformationstested (Fig.2b, Supplementary Fig. 3 and Sup-
plementary Video 1). We employ four error metrics to quantitatively
evaluate the performance of C2DT, that is, the average distance (AD),
the maximal distance (MD), the CD*® and the Hausdorff distance” (HD);
for expressions of these metrics, see Methods. We train several C2DTs
with different hyperparameters and compare their performance to
determine an optimized network structure. The quantitative results
are presented in Supplementary Table 2. We find that the C2DT with
six transformer layers outperforms the other candidates. The AD error
achieved with this setup is as low as 1.379 + 1.048 mm, comparable to
theaccuracy achieved with RGB-D cameras frequently used as ground
truthin the relevant research®.

Weimplement ablation studies of the C2DT with six transformer
layers to better understand the role of each loss term and position
encoding. The results are shown in Fig. 2b, Supplementary Fig. 3 and
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Fig.2|High PGR 3D deformation reconstruction based on the virtual dataset.  different C2DTs. The colour of each point inreconstructions indicates the

a, Thearchitecture of the C2DT that infers the displacement of each pointin the distance from the corresponding point in the ground truth. The region of interest
source point cloud (without deformation) from the SCAS capacitance readouts. isthe middle sectionin the source point cloud. The pointsin the region of interest
Inthe encoding part, the network encodes the input capacitance readouts and (marked in black) should be mapped into the middle section in reconstructions if
the geometrical structure information of electrode pairs to a high-dimensional C2DTslearn correct point-to-point correspondences. We can observe apparent
space and feeds them to the transformer encoder to distil proprioceptive shiftsin the reconstructions of the C2DT w/o markers. ¢, The performance of
information. In the decoding part, the network manages to assign a correct the C2DT under four different numbers of markers (mean + standard deviation
displacement to each pointin the source point cloud based on the output on 7,096 testing samples). d, The performance of the C2DT under four different
sequence of the encoding part. For more implementation and architecture electrode layouts (mean + standard deviation on 7,096 testing samples).

details, see Methods. b, A set of examples of reconstructions generated by
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Supplementary Table 3. We observe that the C2DT cannot learn correct
point-to-point correspondences without including visual markers in
training. This phenomenonis illustrated in Fig. 2b, where the points
in the region of interest of the source point cloud are not mapped
into the correct corresponding region using the C2DT without (w/0)
markers. Although reconstructions show similarities with the ground
truth by minimizing the CD term, point-to-point errors remain large.
We also identify that, by retaining only the squared distance term of
the visual markers during training, local distortions arise in a set of
frames of reconstructions. Thisindicates that the CD term can benefit
thegeometrical quality of the reconstructions. Finally, we observe poor
convergence when attempting to train the network after removing the
positionencoding part. We visualize the position representations of the
trained C2DT through ¢-distributed stochastic neighbour embedding
(t-SNE)*° (Supplementary Fig. 4) and see that, after position encoding,
the electrode pairs with high geometrical correlation tend to cluster
together, and the electrode pairs geometrically far apart are also far
apart in the feature space. It suggests that our position encoder can
generate distinctive geometric representations based on the locations
oftheinputelectrode pairs.

The redundant SCAS design validates its feasibility in the virtual
environment. However, the high density of markers and electrodes
poses practical challenges to the fabrication and experimentation of
the physical system. To reduce complexity while maintaining proprio-
ception performance, we investigate the impact of the number of mark-
ersand electrode layout onthe performance of the C2DT. The results of
this analysis, shown in Fig. 2c, prove the accuracy improvement from
increasing the number of markers plateaus at 16. It provides evidence
that asmall set of markersis sufficient for the C2DT to establish correct
point-to-point correspondences. Similarly, the reconstruction perfor-
mance improves with the density of electrodes, but theimprovement
is minimal after the number of electrodes exceeds a certain value (for
example, 32), asillustrated in Fig. 2d. These results highlight a favour-
abletrade-offbetweenreconstructionaccuracy and electrode/markers
units, confirming that it is safe to sacrifice aminute part of performance
to simplify the fabrication and deployment of the SCAS.

Fabrication and characterization of the e-skin

Onthebasis of the conclusions from the above investigation, we design
a physical SCAS with 32 electrodes, consisting of eight 4-electrode
SCAS modules. This design balances the full-geometry reconstruc-
tion performance with fabrication complexity. We fabricate multiple
four-electrode SCAS modulesin parallel using established elastomer
processing technologies®. The electrodes are made of carbon black
(CB) dispersed elastomers. However, this material is unsuitable for
wires and interfaces due toits high resistivity and non-linear, irrevers-
ible conductivity response under deformation®>**. Therefore, eutectic
gallium (75.5%)-indium (24.5%) (EGaln) is employed to fabricate the
wires and interfaces due to its high conductivity (3.4 x 10’ Sm™) and
stable response to deformation. The fabrication processis presented
step by stepinSupplementary Fig. 5a, and additional details regarding
materials and fabrication are reported in Methods.

The four-electrode SCAS module (20 x 120 mm) consists of four
different functional layers (Figs. 1a and 3a), that is, the protective
substrate (thickness 0.39 mm), the electrode layer (0.08 mm), the
isolation layer (0.24 mm) and the sealing layer (0.3 mm). We engrave
microchannels for wires (width 0.5 mm) and connections (3 x 2 mm)
on the isolation layer using a laser machine. Then the sealing layer is
bonded to the outward surface of the isolation layer. We inject the
EGalninkinto the microchannels. The CB electrodes and EGaln wires
are connected by vertical interconnect holes. The relative capacitance
response of a 40% strain ranges from 16% to 19%, depending on the
activated electrode pairs (the platform for cycling characterizationis
showninSupplementary Fig. 7a). The response curves show excellent
linearity and consistency over multiple cycles (more than 500 cycles

in Supplementary Fig. 7b,c). For comparison, we characterize a SCAS
with CB wires using the same approach (Supplementary Fig. 7d,e). As
Fig.3billustrates, the SCAS with EGaln wiresis superior toits CB wires
counterpart in terms of sensitivity (larger responses under the same
deformations), linearity (no distortionsin response curves) and cycling
stability (does not shift after 500 cycles of stretches).

We uniformly deploy eight four-electrode SCAS modules on the
surface of a soft manipulator with the size of 20 x 20 x 240 mm (Sup-
plementary Fig. 5b; 40 mm in height for the interface area, that is,
not reconstructed). The 32-electrode SCAS, consisting of eight SCAS
modules, connects to an in-house developed data acquisition system**
to measure capacitance values. We use two oppositely placed RGB-D
cameras (Azure Kinect) to capture real-time, ground-truth 3D defor-
mations of the robot in the colour point cloud format from two com-
plementary views, and then fuse them in a single coordinate system.
We dye the sides of the robot arm white as its original transparency
negatively impacts the quality of data collected by RGB-D cameras.
Sixteen yellow visual markers are placed to encourage the network to
learn correct point-to-point correspondences during training (Sup-
plementary Fig. 5c). The experiment platform (Supplementary Fig. 8)
cansynchronously record capacitance and point cloud dataat aframe
rate of around 30 frames per second (fps).

The reliability of the SCAS allows us to record capacitance read-
outs frames (each frame comprises 76 independent readouts) when
the robot arm is subject to arbitrary external loading applied via the
bottom holder over a long period (we intermittently collect about
1,220 seconds (s) of deformation data during a 10 h experiment). To
demonstrate the superiority of our approach, weimplementarandom
sequence of complex deformations, including omnidirectional bend-
ing, omnidirectional elongation, twisting around an arbitrary axis
and their compound deformations (Fig. 3c), during the experiment.
In most frames, point clouds collected by cameras cannot represent
full-geometry 3D deformations due to missing points caused by inevi-
table visual occlusion. We fill points by a shape reconstruction® for the
frames with minor missing point issues and directly filter the frames
that have severe occlusion. Then we obtain a total of 30,973 frames of
data (for details of data acquisition and pre-processing, see Methods).
Aset of samplesin this dataset is shown in Fig. 4a and Supplementary
Fig. 9.

Real-world high PGR proprioception

The challenge of real-world high PGR proprioceptionis exacerbated by
therelatively poor quality of point clouds (restricted by the accuracy
of cameras, occlusion, light conditions), noise in the SCAS signals, and
imperfect synchronization between different devices. Tocompensate
fortheseadded sources ofinaccuracy, we enhance the C2DT framework
byincreasing the number of input frames (NV;adjacent frames of SCAS
readouts) and introducing a regularization termin its loss function
to limit the distance change between neighbouring points before and
after deformation. We train several C2DTs with different input frame
numbers using the filtered real-world dataset. The full-geometry recon-
struction performance improves as theinput frames number increases
and achieves the minimum error at three adjacent input frames
(Fig. 4b). This improvement indicates that increasing the number of
input frames can reduce the negative impacts of noise in SCAS sig-
nals and asynchronization between devices. The temporal correlation
among adjacent frames can also be considered favourable for defor-
mationreconstruction. A representative set of reconstructions of the
C2DT with three input frames is shown in Fig. 4c and Supplementary
Video 2. Theresults achieve 2.322 + 0.687 mm for the CD metric (Sup-
plementary Table 4) withthe PGR of 3,900 (that s, 1,300 pointsineach
point cloud). Compared with simulation results, some elaborate geo-
metrical features of reconstructed deformationsin certain frames are
less obvious, especially for those related to twisting (Supplementary
Video 3). This is mainly because the ground truth point clouds acquired
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EGaln wires shows better sensitivity, linearity and cycling stability than its CB
wires counterpart. ¢, A representative set of complex deformations that appear
inour experiment.

by RGB-D cameras cannot reach the quality of point clouds synthesized
by 3D-SECF simulation.

According to the ablation study (Supplementary Fig. 10), visual
markers play asimilar rolein physical and virtual environments, facili-
tating the network to learn correct point-to-point correspondences.
We also observe that adding the neighbour regularization term can
slightly improve the reconstruction quality (Supplementary Table 4).
The positionencoding partis crucial to extract useful proprioceptive
information from physical SCAS signals. Similar to its contributionin
the training with the simulation dataset, position encoding can assign
discriminative high-dimensional representations to different electrode
pairs based on their geometrical structures (Supplementary Fig. 11).

Discussion

We presented a proprioception system that could visualize high PGR
3D full-geometry deformations of soft robots. It is empowered by an
intrinsically stretchable SCAS that leverages capacitances formed by
the combinations of planar boundary electrodes and an end-to-end
neural architecture to translate SCAS signals directly into point clouds.
While we demonstrated the advancement of this proprioception system
on complex deformations, several issues remain to be addressed to
fully exploit its potential.

The SCAS fabrication involves manual operation (for example,
liquid metal injection, sealing layer attachment, interface to sensing
electronics), leaving room for performance improvement. Although
calibration of sensor readouts can, to a certain extent, mitigate this
issue, a desirable solution would require automated manufacturing

technologies, such as direct writing of liquid metal and 3D printing of
soft materials. Furthermore, the thickness of the SCAS is about 1 mm,
whichissuitable for demonstrating high PGR proprioceptionin our soft
robot testbed (20 x 20 x 200 mm) and other similar proprioception
scenarios. However, more advanced fabrication approaches* > could
be adopted to extend the proposed framework to other application
domains, such as skin-interfaced wearable devices.

While this work focuses on proprioception induced by external
forcesappliedtothetip of therobot, real-world operation entails many
other kinds of stimuli from the environment. These stimuli, in turn,
may be the source of soft body deformations (for example, compres-
sion) and involve peripheral information (for example, temperature,
texture). Due to the capacitive nature of SCAS, it can, in principle,
simultaneously detect several distinct types of external stimuli, such
as tactile mapping and permittivity of the objects in the proximity of
the robot. The SCAS signals could be interfered, and the accuracy of
the shape reconstruction might drop when external stimulioccur. Two
possible solutions for this issue are envisaged. First, a stretchable con-
ductivelayer thatisgrounded canbeintegrated tothetop ofthe SCAS,
shielding the external electrical interference. In addition, sensitivity
to external stimuli provides an opportunity to measure them. More
advanced datainterpretation algorithms could be developed to decou-
ple deformation and external stimuli information from SCAS signals,
which however could be highly challenging. Integrating multi-modal
sensors into the SCAS framework has the potential to alleviate this
issue and enhance the capability to detect multiple external stimuli
simultaneously.
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Fig. 4 | Real-world high PGR proprioception. a, The curves of calibrated
capacitance readouts of the SCAS during a period of about 20 sin the
experiment. Eachreadout s calibrated as follows: ¢ = (¢ — Cemp)/Cemp Wherecis
the calibrated capacitance readout, ¢’is the original readout and ¢, is the

readout without deformation. b, The performance of C2DTs, which take different
numbers of adjacent frames as inputs (mean + standard deviation on 4,262
testing samples). ¢, Arepresentative set of examples of high PGR 3D deformation
reconstruction.

We also point out that the C2DT belongs to the paradigm of
supervised learning that requires abundant labelled datafor training.
A notorious problem is that the acquisition of labelled data is expen-
sive, time-consuming and in some cases evenimpossible. For instance,
point clouds of compression-induced deformations cannot be easily
collected through vision-based methods due to inevitable occlusion.
The proposed coupling field simulation can generate a large number
of high-quality labelled training samples. However, the gap between
virtualand physical environments leads to performance deterioration
if the network is trained only on the simulation dataset. Sim-to-real
transfer learning methods are considered as the potential solution.
The development and application of sim-to-real approaches suitable
for soft robot proprioception can substantially increase the value of
the simulation dataand reduce the cost of real-world data acquisition.

Notwithstanding the above limitations, the proposed propri-
oception system can achieve real-time (30 fps), high PGR (3,900)

full-geometry deformation reconstruction with high accuracy
(2.322 £ 0.687 mm CD error) under complex deformations. This level
of proprioception represents a step change over previous attempts and
is beyond existing proprioception systems. Notably, the system has
the potential to be extended to different types of soft bodies through a
straightforward learning process without requiring a priori knowledge.
Implementing such high PGR, full-geometry proprioceptionis essen-
tial for perceiving full-body status and achieving precise closed-loop
control of softrobots, the key to breakthroughs in performing complex
tasks.

Methods

Solid mechanics and electrostatics coupling field simulation
The coupling field simulationisimplemented in COMSOL Multiphysics
to simultaneously generate virtual SCAS sensing data and deforma-
tion data to demonstrate the effectiveness of the proposed method.
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The object of study is asquare soft robot arm made of silicone (length
100 mm, width100 mm, height 1,000 mm; Supplementary Fig.2a). An
array of 64 electrodes (8 x 8) is placed on the surface of the robot arm
to form a 64-electrode SCAS. For simplicity, each electrode is set as a
105 x 30 mm flat surface without thickness. The distance between two
adjacent electrodes on the same side is 20 mm both horizontally and
vertically. The distance between each edge and the nearest electrodeiis
10 mm. Relevant material properties are set as follows: Young’s modu-
lus E=4.15MPa, Poisson’sratiov = 0.022, density p =1.28 x 10° kg m >,
relative permittivity €, = 3.

Weimplement 956 different episodesin the simulationto produce
avirtual soft robot proprioception dataset. Each episode mimics a
time-continuous deformation process and is discretized into about
40 frames. In each frame, the deformation and the corresponding
capacitance readouts of the SCAS are recorded. We apply four dif-
ferent types of loads to generate various complex deformations: (1)
the compound deformation of elongation and twisting L, ,: a torsion
force and a pulling force along the z axis are simultaneously applied
tothetip of therobotarm; (2) purebendingL, ,:apullingforcein the
x-y plane is applied on the tip of the arm; (3) two-phase twisting and
bending L, ,: A torsion force is applied on the tip of the arm in the
first r frames (r ranging from 6 to 16), and then a pulling force in the
x-yplane is applied on the tip while maintaining the twisting state;
(4) the compound deformation of twisting and bending L, ,, ,: a tor-
sion force and a pulling force in x-y plane are applied to the tip at the
same time. Each deformation is represented by a 3D point cloud with
1,716 points. Examples are shown in Supplementary Fig. 3. Since it is
impractical to ascertain the exact point-to-point correspondences of
allpoints between two different deformationsin the physical world, we
resortto ascheme that canberealisticallyimplemented. We select 64
points as visual markers, whose correspondences are available during
network training and the correspondences of the remaining points are
only used in testing for evaluation (Supplementary Fig. 2a).

Theoretically, any two electrodes can form a capacitor. The SCAS
with 64 electrodes can produce 2,016 independent capacitance read-
outsineach measurement frame. However, many of them are extremely
smalland cannot bereliably measured inthe realworld. Therefore, only
capacitances of electrode pairs in the same layer and capacitances of
certainelectrode pairs between two adjacentlayers are recorded. Sup-
plementary Fig.2bshows all 28 electrode pairsinthe first layer that form
measurable independent capacitors. Supplementary Fig. 2c shows all
24 electrode pairs between the first and second layers that form measur-
ableindependent capacitors. Following this sensing scheme, the SCAS
cangenerate 392 independent capacitance readouts per measurement
frame. Each readout is calibrated as follows: ¢ = (¢’ — Cemp)/Cemp Where
cis the calibrated capacitance readout, ¢’ is the original readout and
Cmpis thereadout without deformation. Examples of calibrated capaci-
tance readouts are shown in Supplementary Fig. 3.

Atotal 0of 39,334 frames (956 episodes) of deformations and capac-
itance readouts are generated through the coupling field simulation,
of which 2,319 frames (53 episodes) are with L, ,; 12,552 frames (300
episodes) are with L, ,); 12,269 frames (303 episodes) are with L, ;
and 12,194 frames (300 episodes) are with L, ,, .

C2DT for the virtual SCAS

Ingeneral, the C2DTis adeep model (Fig.2a) thatis able to deformthe
source point cloud P, to approximate the target point cloud P based
onthe measurement characteristic tensor (¢, Q,, Q.). Here, P, € RN
is the point cloud without deformation; N, is the number of points in
P,, which is 1,716 in this case; P € R**3 and P € R"*? are the ground
truth and reconstructed point clouds with a specific deformation,
respectively; ¢ € RM*1is the corresponding calibrated capacitance
readouts vector; N,,is the number of readoutsin cwith the value 0f 392
in this case; and Q, € R">* and Q,, € RV»** are the coordinates
of electrodes to generate c.

The C2DT architecture consists of two parts, thatis, encoding and
decoding. Theinputofthe encodingpartisc, Q. and Q,. Q. and Q,,are
considered as positional signals that can help distinguish different
elementsinc. They pass through the multi-layer perceptron (MLP) f,(-)
to obtain the geometrical representations of individual electrodes. We
next choose an element-wise max function to integrate the two elec-
trode representations into the final geometrical representations for
electrode pairs as the capacitanceisindependent of the order of elec-
trodes according to the reciprocal theorem. The MLP f.(-) maps c to
high-dimensional representations, and the sum of capacitive and
geometrical representations is the input of the transformer encoder
E(-) with the length of N,,. For the decoding part, P, s first fed to the
MLPf,(-), and then multi-head attention isimplemented over the out-
puts of f(-) and E(-) through the transformer decoder D(-). The MLP

fa(-)isused to map the output sequence of D(-) to the displacement of
each point, and the reconstruction Pis obtained by adding it to P;.

Pisexpected to be as close as possible to the target point cloud P.

This goalis achieved by minimizing the following loss function:

N, X . N j j A
L=Epp| A S IB-P RS (mip Ip, — P2 + min|p; —p,I%) o
4 j= r T r

i=1 1\Pr€

-
squared distance Chamfer distance

where P, € R¥*3represents the remaining points; p/ € R3is the coor-
dinates of the jth remaining point; p|, € R*isthe coordinates of the ith
visual marker; N,and N, are the numbers of the visual markers and the
remaining points, respectively; #is the distribution of P;and A;and A,
arethe weights of the squared distance term of the visual markers and
the CD term of the remaining points, respectively.

The structures of subnetworks of the C2DT are as follows:

« fsLinear(3, h.,) > ReLU » LayerNorm(h,,,) > Linear(An, dmoge)
- ReLU ~> LayerNorm(d,oqer)

* f,:Linear(3, A,,) > ReLU > LayerNorm(h,,,) > Linear(hep, dmoder)

» f.Linear(1,h,,) > ReLU - LayerNorm(h,,) > Linear(h..,, dmoder)

» fsLinear(d 4, 3) > ax Tanh

« E:LayerNorm(dy,oq4e) 2 Transformer.EncoderLayer(d ogerr s F1,
Pdrop) ® Nejayer

« D:Transformer.MutualLayer(dyoqei it s Parop) @ Ninetayer >
Transformer.DecoderLayer(d,oqer, A 1, Parop) ® Ngayer

where he, =32, dioge =128, a=1.2, dy =256, 1= 8, Pyyop = 0.1, Neayer =3,
N jayer = 1aNd Ry = 2. Linear layers in f; and f, do not have learnable
biases while others have. The LayerNormin £ takes the sum of capacitive
and geometrical representations asinput. Transformer.EncoderLayer
and Transformer.DecoderLayer are exactly the same with the original
transformer®. We remove the first self-attention cell of Transformer.
DecoderLayer and use the remaining part as Transformer.MutualLayer
because P,remains constant. Transformer.EncoderLayer ® n.,., rep-
resents a stack of n.,,., Transformer.EncoderLayer.

We split the virtual proprioception dataset into three exclusive
parts, that s, training, validation and testing sets. The training set
includes 22,517 frames (548 episodes), of which 1,334 frames (31 epi-
sodes) are with L, ,, 7,204 frames (172 episodes) are with L, ,), 6,980
frames (173 episodes) arewith L, . , and 6,999 frames (172 episodes) are
withL , ,. The validation setincludes 9,721 frames (236 episodes), of
which 550 frames (12 episodes) are with L , ,, 3,093 frames (74 episodes)
arewithL ,,3,098 frames (76 episodes) arewith L, ,and 2,980 frames
(74 episodes) are with L, , ,. The testing set includes 7,096 frames
(172 episodes), of which 435 frames (10 episodes) are with L, ,,, 2,255
frames (54 episodes) arewith L, ,, 2,191frames (54 episodes) are with
L, and2,215frames (54 episodes) arewith L, , .

Quantifying the range of deformations can assistin evaluating the
reconstruction performance. However, it is challenging to character-
ize the range of complex deformations using only several parameters,
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such as bending angle and/or elongation displacement. Otherwise, a
low PGR proprioception system would be sufficient to provide accu-
rate geometry reconstruction. Here we characterize the deformation
range using (1) the range of coordinates of points and (2) the maximum
displacement of the centroid. In the simulation, the coordinates of
testing samples areinthe range of -724.27t0728.68 mminthexdirec-
tion, -742.15t0 743.66 mmin the ydirection and -728.09 t0 487.95 mm
in the z direction. Note that we set the centroid of the point cloud
without deformation as the origin. The maximum displacement for
the centroid is 341.92 mm.

The C2DT is implemented in Python and PyTorch packages™.
We use the Adam*® optimizer (8,=0.9, 8,=0.98, € =10"°) to update
learnable parameters and minimize £. We set the initial learning rate
0f0.001, which we decay by afactor of 1.2 every 15 epochs. We compute
A; and A, as follows: A; =A/3(AN, + 2N,), A, =1/3(AN, + 2N,), where
A = max(1,300 - 2 x (epoch — 1)). We clip the gradient with the thres-
hold of 0.5 and train the C2DT using the training set for 300 epochs
with a batch size of 24. Each epoch takes about 9 min on 3 Nvidia
Quadro P5000. We save the network with theleast validationloss as our
final model.

We quantitatively evaluate the performance of the C2DT through
four error metrics, thatis, the AD, the MD, the CD and the HD:

1 Np .
AD = =37 Ip' ~P'l» @
N, o
MD = i—p' 3
S P =P )
1 Np .
CD = — > (min|p—p'|, + min|p’ — p 4
N, Zl(” Ip = P'l; +min|p p\z) @)
HD = max (ma)( min |p — p|,, max min |p—i)|2) ©)
peP peP PEP pebP

We compare the performance of C2DTs with different hyperpa-
rameters, and the results are presented in Supplementary Table 2. To
understand the impact of each loss term and position encoding on
the performance, we alsoimplementablation studies. We remove the
squared distance term and the CD term, respectively, and perform the
sametraining procedure to obtain results of the C2DT w/o markers and
the C2DT w/o CD. Thereconstructed point clouds and values of these
metrics areshownin Fig. 2b, Supplementary Fig. 3 and Supplementary
Table 3. Wealso try to train the network without the position encoding
part, butitis unable to converge. The position representations of the
trained C2DT are visualized through t-SNE** and presented in Supple-
mentary Fig. 4, which can help discover the geometrical correlation
among different electrode pairs.

Wealso investigate the performance of C2DTs with different num-
bers of visual markers and different electrode layouts using the same
method to guide the sensor and network designin the real world. The
results are shownin Fig. 2c,d.

SCAS fabrication, characterization and deployment

The 32-electrode SCAS comprises eight modular 4-electrode SCASs.
Each SCAS module has four different functional layers, that is, the
protective substrate, the electrode layer, the isolation layer and the
sealinglayer. We fabricate each SCAS module layer by layer. The steps
are shown in Supplementary Fig. 5a: (1) We mix Smooth-on Ecoflex
00-30 part A (1.0) and part B (1.0) and pour it on a glass plate. Then
we use a TQC Sheen micrometre film applicator to flatten the silicone
and cureitfor3 minat100 °C. (2) We first mix Imerys Enasco 250P con-
ductive CB (0.2) withisopropyl alcohol (2.0), after which the uncured
silicone mixture (2.0) is added and we stir them for 3 min. A layer of
uncured conductivesiliconeis coated on the protective substrate and

iscured for3 mininal00 °Coven. (3) We use a40 W Aeon MIRA 5 laser
machine to pattern CB electrodes. The parameters are set as follows:
28% power,300 mm s speed and 0.05 mminterval. The planar size of
eachelectrodeis 21 x 6 mm, which is one-fifth of the one studied in the
simulation. (4) We use the same method as in step 1 to fabricate a sili-
cone membrane for theisolation layer onthe top of the electrode layer.
(5) Two rounds of engraving are performed with 20.5% power,
300 mm s speed and 0.05 mminterval to generate microchannels of
liquid metal wires and connections to readout electronics. Four rounds
ofengraving are conducted with the same parameters to generate ver-
tical interconnect holes. The planar size of readout connections and
verticalinterconnect holesis 3 x 2 mm, and the width of wiresis 0.5 mm.
Thenwe cut the rectangular area of the modular SCAS with 19.5% power
and 25 mm s speed and remove the remaining part. (6) We fabricate a
new silicone membrane following step 1, and we uniformly coata very
thinlayer of uncured silicone mixture onits surface asadhesive. Then
we bond the SCAS cut in step 5 with the membrane. The curing takes
about 4 h under room temperature to ensure high-quality bonding.
(7) We inject EGaln (Sigma Aldrich) ink from readout connections,
and meanwhile exhaust the air in microchannels through the vertical
interconnect holes. (8) We obtain the final modular four-electrode
SCAS. The planar size of the SCAS module is 120 x 20 mm, of which
100 x 20 mm is the area of the electrodes, and 20 x 20 mm is the
interface to readout electronics. The layer thicknesses are 0.39 mm,
0.08 mm, 0.24 mm and 0.3 mm, respectively. Since the fabrication is
easy to scale up, we manufacture five SCAS modules in parallel.

To characterize the response of the SCAS module and verify the
superior performance of EGaln wires compared with CB wires, we
attach afour-electrode SCAS with CB wires and a four-electrode SCAS
with EGaln wires on the front and back sides of asegment of the square
cylinder silicone structure (20 x 20 x 140 mm) and cyclically stretch
them using a Nema23 stepper motor with a SFU1605 ball screw (Sup-
plementary Fig. 7a). Each cycle takes 20 s, and the SCASs are strained
by up to 40%. The entire test takes about 3 h (more than 500 cycles).
Relative capacitance readouts of each SCAS are illustrated in Supple-
mentary Fig. 7b-e. The results show that the SCAS with EGaln wires
has better sensitivity (larger response under the same deformation),
linearity (no distortions in response curves) and cycling stability (no
driftafter 500 cycles).

We cast asquare cylinder robot arm (Ecoflex 00-30) with the size
0f20 x 20 x 240 mm which s one-fifth of the onein the simulation. The
extra40 mmin heightistheinterfaceareafor driving the deformation,
connectingto electronics and bonding with the fixed ceiling. We bond
eight4-electrode SCAS modules onits surface to form the 32-electrode
SCAS (Supplementary Fig. 5b). The soft robot and SCAS are fabricated
with the same material (Ecoflex 00-30), which allows themto be firmly
merged, with no modulus mismatch, by using uncured Ecoflex 00-30
silicone as adhesive. The unity of the material enables the robot and
SCAS to be considered as a whole system during experiments, thus
minimizing the effect of SCAS on the original robot motion and defor-
mation. Supplementary Fig. 6 shows the adhesion between the SCAS
and the robot under various deformations. No separation or disloca-
tion was observed in all cases. The transparency of silicone adversely
impacts the quality of the point clouds collected by RGB-D cameras
based on the time-of-flight principle. We therefore coat a silicone
layer with white Smooth-on Silc Pig Silicone Pigments for better reflec-
tion. We also attach 16 yellow dots as visual markers to assist network
training with correspondence information. We cover the interface to
readoutelectronics with black acrylic tape to reduceits interferencein
pointcloud collection (Supplementary Fig. 5c). Individual electrodes
areindexed and accessible from the readout electronics.

Experimental setup
The experiment platform consists of the soft robot arm equipped
with the 32-electrode SCAS, the readout electronics, two Microsoft
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AzureKinect RGB-D cameras* and alaptop installed with a customized
software to control the readout electronics and record data from the
cameras and the SCAS (Supplementary Fig. 8). Thereadout electronics
isbased ona32-electrode ECT system that supports arbitrary switch-
ingschemes®. Its capacitance measurement resolution is 3 fF,and the
signal-to-noise ratio of all 32 channels is above 60 dB.

The two cameras are placed directly opposite and in a straight
line with the robot armto capture its 3D deformations from two com-
plementary views inreal time. The deformations are saved and repre-
sented via the colour point cloud format. The data recording of the
cameras and readout electronics is synchronized. The frame rate can
reach about 30 fps if we only record the point cloud and capacitance
data. It will decrease to around 20 fps if RGB images are also recorded.

Experimental data acquisition and pre-processing

In real-world experiments, we manually manipulate the hand holder
bondingtothe bottom of the robot armtoinduce a variety of complex
deformations, including omnidirectional bending, twisting around
an arbitrary axis, omnidirectional elongation and their compound
deformations (Fig. 3¢ and Supplementary Fig. 9b,c). Meanwhile, we
synchronously record the SCAS and camera data (that is, capacitance
readouts, colour point clouds and sometimes RGB images). We collect
36,465 frames (about 1,220 s) of experimental data. In this real-world
dataset, the first 36,013 frames (about 1,200 s) record only the capaci-
tancereadouts and colour point clouds; the last 452 frames (about 20 s)
also save the RGB images with areduced frame rate.

The 32-electrode SCAS can produce 76 capacitance readoutsina
single frame, which are calibrated using the same method asin the sim-
ulation. The point clouds from the two cameras are fused in one coordi-
nate system using the chessboard calibration method***’. The raw data
are noisy and contain many meaningless background points, making
them unusable for direct training. We clean and pre-process the data
using MATLAB to selectively retain only the points on the surface of
therobotarm. The points ontheblackacrylic tape and red holders are
eliminated via colour filtering. To further reduce the negative impact
of noise and outliers, we filter out regions whose local point densities
arelower thanapre-set threshold. Duetoinevitable visual occlusion, in
many frames the cleaned point clouds cannot completely represent 3D
deformations. Toalleviate thisissue, further pre-processingis required
before training. Weimplement average grid downsampling witha4 mm
boxgirdfilter at first for computational efficiency. Then we reconstruct
ashapes * onthebasis of the downsampled point clouds to alleviate the
issue ofincomplete representation. The triangular meshes of the alpha
shapes are subdivided three times, and vertexes are extracted as new
point clouds with supplementary points. Inour C2DT framework, the
numbers of points in the source and target point clouds are expected
to be the same. To meet this requirement, we firstimplement average
grid downsampling with a4 mm box gird filter and then use farthest
pointsampling** to eventually select 1,300 points in each point cloud.

We extract yellow visual markers from cleaned point clouds before
downsampling and a shapereconstruction based onthe RGBinforma-
tionof each point. We create agraph according to one frame of marker
points. The connection of each two pointsin the graphis determined
by their distance. The threshold of connected distance is 6 mm. Each
connected subgraph with more thanten pointsis considered asavisual
marker, and the average of the coordinates of all pointsin asubgraphis
used torepresent the marker position. The number of extracted visual
markers is not always 16 due to camera occlusion. It is almost impos-
sible to automatically obtain point-to-point correspondences of visual
markers under our current experimental setup. We therefore align
visual markers layer to layer. The 16 visual markers canbe divided into
fourlayers, and eachlayerincludes 4 markers. We create agraph based
onone frame of coordinates of extracted markers with the connected
distance threshold of 26 mm. Each subgraphis alayer of markers. The
permutation of the layer is determined by the relative positioninthey

axis of the fused coordinate systemamong all four layers. We delete all
abnormal frames for which the number of extracted markersis larger
than 16 and/or the number of layers is not equal to 4. We fill the layers
for whichthe number of markersis less than 4 with (0,0,0) to ensure all
layers have the same number of points, which canimprove the compu-
tational efficiency during training. Furthermore, we remove the frames
with critically missing pointsissues because of the low quality of their
reconstructed a shapes. The number of markers in individual layers
indicates the severity of missing points. The frames with at least two
markersin all layers are retained while others are dismissed.

Upon the above filtering process, a total of 30,973 frames of data
remain available for analysis. We randomly inspect a sample of 500
frames out of the dataset and do not find serious missing pointsissues.

C2DT for the physical SCAS

The basic framework of C2DT in the real-world experiment is analogous
to that in the simulation. However, some modifications are required
duetothe difference between the real and virtual environments. First,
theloss functioninsimulationisnolonger applicable, asin our experi-
ments the point-to-point correspondences of visual markers are not
available. Instead, we propose a modified loss function as follows.

L* = Ep.p {/11 2 Z [d(p,k Py)- 5 +d(P/k P, Sk']
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Thefirsttermof £*counts the CD between the reconstruction and the
ground truth of markers layer by layer, where P, e RM->3is the coordi-
nates of the visual markers in the [ layer; p, € R3isthe coordmates of
theithpointin P,; d(p, ,Pisthesquared distance between p and the
nearest pointin P, ,N,lsthe number of layers; N, is the number ofmark
ers in each layer and the values of N;and N, are 4 in this case. When
computing the loss, we only need to consider the marker points
extracted in the data pre-processing and ignore the padding points.
Note that all points in P, are marker points as they are generated by
the network based on the corresponding capacitance readouts and the
source point, which does not include padding points. To eliminate
the effect of padding points during training, we synthesize masks sz’g
and Sfi‘gas follows.
. Sgr is set to 1if p} is amarker point. Sé",’zir issetto 0if p} isa
padding point.
. Sk’ is set to 1if P, does notinclude any padding points,
otherwise S’“ issetto 0.

Thesecondtermin £*isexactly the same asits simulation counterpart
that counts the CD between the reconstruction and ground truth
ofthe remaining points. The third termis aregularizer that encourages
the distance between neighbouring points to not change dramatically
before and after deformations, where p'is the [th neighbour of p/; s
is the distance between the corresponding two points in the source
pointcloud; §,and 6, are coefficients of thresholds. We count the loss
only if the neighbour distance in the reconstruction falls outside the
pre-set range. We achieve this with masks § and §}!as follows.

. S’ is set to 1if || — p/ l,—64-54 <0, otherWIseS’ issettoO.
. S"lssettollﬂp’ Pl —6,-51>0, otherWIseS’ issetto 0.

The number of input frames in the physical world is not constant to
1.In contrast, the C2DT takes several (NV,) adjacent frames as its input.
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The first linear cell inf, is therefore modified to Linear(N,,A.). The
hyperparameters of the C2DT are set as: A, = 32, dpyoqe = 64, dir =128,
h=4,Pyop=0.1, Neayer = 2, Nppiayer = 1and N4, = 1. The network is trained
and evaluated using almost the same procedure as presented earlier.

Wessplit the real-world datasetinto three exclusive parts. The first
26,711 frames (about 1,020 s) are used for training (20,693 frames) and
validation (6,018 frames), and the last 4,262 frames (about 200 s) are
used for testing. The coordinates of testing samples are in the range of
-141.01t0129.99 mm in the x direction, -98.41t0 190.91 mm in the y
direction,and -100.28 to 111.73 mmin the z direction (the centroid of
the point cloud without deformationis set as the origin). The maximum
displacement for the centroid is 72.38 mm. We set §,=0.5and 6,=2.
We compute A, 4,and A, as follows: 4; = /A T}, Zﬁ”l(s’,‘iig + Sg,) +2N,],
A=V, zf.vjl(sgfg +SH)+2N,] and 4 = 110[3), Yk + 561,
where 1 = max(1,300 — 10 x (epoch —1)). In total, we run 200 epochs
with a batch size of 39 and retain the network with the least validation
loss. Weimplement ablation studies to evaluate the effect of individual
loss terms (Supplementary Fig.10) and quantitatively evaluate recon-
structions with CD and HD metrics, which do not require point-to-point
correspondences (Supplementary Table 4). Finally, we visualize the
position representations of individual electrode pairs via t-SNE to
illustrate the geometrical correlation between different capacitance
readouts (Supplementary Fig. 11).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Alldataare publicly availablein Edinburgh DataShare with the identifier
https://doi.org/10.7488/ds/3773%.

Code availability
Codes for theimplementation of the C2DT are available in Edinburgh
DataShare with the identifier https://doi.org/10.7488/ds/3773%.
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