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1. Introduction

Diabetes mellitus, affecting over 500 million people globally, is
characterized by high blood glucose (BG) levels stemming from
inadequate insulin production (Type 1) or diminished insulin

responsiveness (Type 2).[1] This metabolic
disorder can lead to serious vascular and
nonvascular complications, thereby increas-
ingmortality rates.[2,3] Recent advancements
in wearable technology, particularly contin-
uous glucose monitorings (CGMs), have
revolutionized diabetes management by
enabling continuous tracking of BG lev-
els.[2,4] However, while CGMs are adept at
monitoring, they lack therapeutic functions,
prompting the development of closed-loop
systems that adjust insulin dosing based on
glucose readings. The effectiveness of these
systems heavily relies on the algorithms
used to predict BG levels, which are still
in early development stages.[5] Enhancing
algorithm accuracy is crucial for improving
the safety of closed-loop CGMs, yet the
challenge lies in creating models that can
effectively handle the uncertainties and
long-term inaccuracies associated with BG
predictions.[6–8]

Early BG prediction works primarily focused on the use of tra-
ditional machine learning algorithms, including models such as
autoregressive (AR) moving average (MA),[9] support vector
regression,[10] and random forest.[11] Compared with traditional
mathematical modeling methods, machine learning can model
nonlinear BG changes in a data-driven learning manner. In
recent years, deep-learning technologies, driven by big data and
backpropagation computations,[12] have been extensively utilized
in BG prediction. Deep learning is adept at capturing nonlinear
functional relationships in complex scenarios and mass data.
Deep neural networks (DNNs) based on architectures like con-
volution neural network (CNN),[13] recurrent neural networks
(RNNs),[14] long short-term memory (LSTM),[15] and gated recur-
rent unit (GRU)[16] are widely used in glucose prediction.
Transformer[17] model also gained attention in BG task, which
demonstrates outstanding performance in diverse time series
prediction contexts, distinguished for its advanced contextual
learning capabilities via a multi-head attention mechanism.
Meanwhile, recent works[18,19] reported that the Transformer
model achieves leading performance in BG prediction over
vanilla RNN families.

However, due to the nonlinear and complexity of glucose
fluctuations, it is a significant challenge to accurately forecast
BG trends under long-term prediction horizons (LTPHs). As
shown in Figure 1, we find that LSTM and existing advanced
Transformer models for BG prediction suffer significant
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Accurate prediction of blood glucose (BG) with precise data recorded by con-
tinuous glucose monitoring (CGM) is essential to improve the safety of closed-
loop insulin delivery systems for diabetic patients. However, predicting BG trends
under long-term prediction horizons is challenging due to the dynamic com-
plexity of glucose changes. In this work, a ProbSparse-Transformer model, which
alleviates the long-term error spreading effect seen in traditional autoregressive
models, is developed. This model incorporates a trustworthy uncertainty-
estimation approach to reduce output variance, further improving predictive
accuracy. Additionally, an open-source benchmark is established using four
public datasets and five evaluation metrics to comprehensively assess model
performance. This model shows significant improvements in both short-term
(15–30 min) and long-term (45–60 min) BG predictions. In the 60 min task, it
achieves root mean square error values of 10.86, 15.33, 20.46, and 13.74 mg dL�1

across four datasets, representing a 20%–39.4% improvement over previous
methods. Finally, the model on edge devices is compressed and deployed,
demonstrating its potential for practical application in real CGM systems.
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accuracy degradation in longer prediction horizons (45 and
60min). One perspective[18,20] is that the AR output modes in
RNNs and vanilla Transformer architectures can lead to error
spreading effects in prediction tasks, reducing the accuracy of
tail-end forecasts. In the task of BG prediction, we have also
observed this severe error spreading phenomenon caused by
AR output (discussed in Section 6). This error spreading not only
negates the advantages of long-term prediction in glucose man-
agement but may also lead to misjudgments in insulin dosage
for individuals, resulting in serious consequences. Therefore,
achieving more accurate LTPH BG performance becomes a chal-
lenging task.

To that end, we introduce a ProbSparse-Transformer struc-
ture[20,21] (as illustrated in Figure 2) to BG prediction tasks. By

employing sparse sampling computation, the ProbSparse self-
attention mechanism can successfully enhance the modeling
capability for long sequences,[20] effectively alleviate errors in lon-
ger horizons, and significantly reduce the computational burden
and memory requirements of the Transformer. To further
increase the credibility of the ProbSparse self-attention in BG
prediction, we quantify the uncertainty of the output distribution
to enhance the prediction credibility. Meanwhile, to mitigate the
issue of error spreading inherent in AR prediction modes, we
have adopted a simple yet effective one-step generative head
to generate prediction results. With only one-time inference to
generate all predicted values, the one-step generation head fur-
ther enhances the prediction efficiency.

We evaluate our proposed model on 4 datasets with 81 clinical
individuals. The results show that our model demonstrates supe-
rior BG prediction capabilities, particularly excelling in LTPH
tasks, compared to existing works. We also conduct transfer
learning approach to improve its capability for personalized pre-
diction and show the deployment capability on real edge devices.
We believe the accurate long-term BG prediction can provide a
valuable preemptive window, reducing the risk of abnormal BG
levels and further advancing the treatment of diabetes.

2. Related Works

The prediction task is complicated by the highly nonlinear and
nonstationary characteristics of BG variations. Nevertheless,
analysis of extensive datasets of glucose measurements enables
machine learning algorithms to discern complex patterns and
relationships. Kamuran et al.[22] used the ARMAX prediction
algorithm that utilizes the AR and MA components to model

0

5

10

15

20

25

15min 30min 45min 60min

Ours

Gluformer

LSTM

R
M

SE
 m

g/
dL

Figure 1. Prediction errors of the three models under different horizons of
OhioT1DM. Dot-lines illustrate the error trend. Vanilla LSTM model com-
monly used in blood glucose prediction and the recent Gluformer model
are selected.
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Figure 2. Framework of our BG prediction system. Wearable devices collect blood glucose and other physiological data, which serve as inputs to the
prediction model. After data embedding, we introduce a structure utilizing ProbSparse self-attention and a one-step generative head within a
Transformer-based model, which is concurrently designed for deployment on edge devices, enabling real-time analysis and providing precise BG moni-
toring for diabetic individuals.
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the external condition (X) and accurately track BG variations.
This method effectively addressed the nonlinear challenges in
BG prediction and provided reliable warnings for the risk of
hypoglycemia within the next 30min (root mean square error
[RMSE]= 18.55mg dL�1) and 60min (RMSE= 38.06mg dL�1)
in their experimental study.

The emergence of DNNs has markedly simplified complex
prediction tasks, primarily due to their capacity to transform
inputs into high-dimensional latent spaces and discern temporal
associations.[6] In the realm of glucose forecasting, DNNs adeptly
employ historical glucose data to aid in future predictions, as
evidenced by previous studies.[23,24] This showcases their profi-
ciency in detecting subtle patterns and trends that are essential
for precise forecasting. Perez et al.[24] demonstrated predictive
modeling efficacy using linear layers, achieving RMSE values
of 9.74mg dL�1 over a 15min time window, 14.75mg dL�1 over
30min, and 25.08mg dL�1 over 45min. In contrast to conven-
tional feed-forward neural networks, RNN features recursive con-
nections that incorporate outputs from previous or future time
steps as current inputs. However, standard RNNs often encoun-
ter issues with vanishing and exploding gradients during back-
propagation. LSTM and GRU networks address these RNN
challenges in long sequence prediction by employing a gating
mechanism. Martinsson et al.[25] developed an RNN-based sys-
tem for predicting BG over 30 and 60min horizons, utilizing
the OhioT1DM dataset.[26] They also quantified the uncertainty
of their predictions by using the standard deviation (SD), derived
from a parameterized univariate Gaussian distribution over the
outputs. The mean and SD of the RMSE across six T1DM
patients using their model were 18.867� 1.794mg dl�1 and
31.403� 2.078mg dl�1 for the 30 and 60min, respectively. Sun
et al.[27] integrated LSTM with bidirectional LSTM to enhance
the prediction accuracy. This integration aimed at deepening the
network architecture and improving its bidirectional sequence
learning capabilities. Li et al.[28] proposed the GluNet prediction
framework using CNNs structure, achieving an RMSE of
8.88� 0.77mg dL�1 with a short time lag of 0.83� 0.40min
for a 30min prediction horizon (PH) on a virtual dataset.
Furthermore, they obtained an RMSE of 19.90� 3.17mg dL�1

with a time lag of 16.43� 4.07min for a 60-min PH, validated
on a real dataset. Attention-based methods[29–31] have been used
for glucose prediction. Zhu et al.[32] integrated RNN with atten-
tion to effectively capture both local and global information in BG
sequences. Additionally, they developed the ARISES (Adaptive,
Real-time, and Intelligent System to Enhance Self-care) system
for implementing these advanced algorithms on a mobile phone
platform. Furthermore, they employed a meta-learning strategy
to transfer the model across datasets, achieving an RMSE of
35.28� 5.77mg dL�1 for 60min PH on a private dataset. The
Transformer model adheres to the conventional encoder–decoder
framework but distinguishes itself by employing multi-head self-
attention mechanisms instead of vanilla RNN. This architecture
excels in parallelism and adeptly captures global relationships
within sequences across multiple semantic spaces. In the context
of glucose prediction, Lee et al.[19] implemented the Transformer
model to execute both prediction and classification tasks through
autoregression. This model was validated on a private dataset
and achieved a mean absolute percentage error (MAPE) of 17.88
in the OhioT1DM dataset. Sergazinov et al.[18] also employed the

Transformer model for glucose prediction and innovatively modi-
fied the model’s dropout layer to quantitatively assess its uncer-
tainty. This adaptation significantly enhanced the Transformer’s
performance in BG prediction tasks. Fine-tuning one small-
sampled data can enhance the model’s capability for specific
and personalized applications. Deng et al.[33] systematically stud-
ied three neural network architectures, various loss functions, four
transfer learning strategies, and four data augmentation techni-
ques, including hybrid and generative models. Through transfer
learning, they improved the accuracy of predicting abnormal BG
levels within an hour.

3. Methodology

As shown in Figure 2, we retain Transformer’s encoder–decoder
structure. Initially, we embed the BG and related physiological
signals and then train model’s prediction capabilities through
the ProbSparse self-attention mechanism and an one-step gen-
erative head.[20]

3.1. Sequence Data Embedding

Contrary to RNN-based models, vanilla Transformers employ a
pointwise self-attention mechanism and lack inherent temporal
continuity information. Consequently, it is necessary to supple-
ment them with specific location and timing data to maintain the
time series’ temporal properties.

Assuming we have the input χt ¼ fxt1, : : : , xtLjxti ∈ ℝDg at
time t. L is the input length, and D is the dimension of xti, con-
sisting of glucose data, insulin dose, carbohydrate intake, and
other wearable data. We first preserve the local context by using
a fixed position embedding and get an uniform representation
of dmodel. This module is aligned with the definition in
Transformer.[17]

PEðpos,2iÞ ¼ sin
pos

2L2i=dmodel

� �

PEðpos,2iþ1Þ ¼ cos
pos

2L2i=dmodel

� � (1)

where j∈ [1,…,dmodel/2] and pos denotes the data position in
input sequence. Additionally, the data from the public dataset,
derived from clinical records, typically records input CGM at
intervals of 5 or 15min.[26,34–36] Therefore, as shown in
Figure 2, we embedded the data by a time encoder. We utilized
a input size of 60 for minute-level granularity (SEmin) and 24 for
hourly granularity (SEhour). Let date

t be the time stamps of χt

from the wearable device.

e ¼ SEmin datetð Þ þ SEhour datetð Þ (2)

Due to the multimodal features of the input, we employed nor-
malization to ensure uniformity in processing across different
feature dimensions. Thus, we get the input

χtenðiÞ ¼ Conv1D Norm χti
� �� �þ ei þ PEðL�ðt�1Þþi,Þ (3)

where Conv1D is a 1D convolution operator. The input data is
embedded into a uniform latent space with a convolution layer,
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so the Conv1D (kernel width= 3, stride= 1) have the same out-
put dimension of dmodel.

Figure 2 illustrates the standard encoder–decoder architec-
ture, where the encoder’s input, χen, is processed by embedding
flow. And χde is the input of the decoder which is represented as

χde ¼ Concat
�
χtenðL�RÞ, : : : , χ

t
enðLÞ

�
,
�
otLþ1, : : : , o

t
LþPH

�� 	
(4)

where PH denotes the prediction horizon, R denotes a portion of
the sequence intercepted from L that is closer to the current time-
point, and Concat(·) is the matrix splicing operation. The o
sequence contains only the timestamp and relative position
(e and PE) of the target sequence.

3.2. ProbSparse Self-Attention Structure

The standard multi-head self-attention mechanism utilizes
Query (Q), Key (K), and Value (V) for calculating attention scores
through scaled dot products. This process is often described as

Softmax QKTffiffi
d

p
� 	

V , where Q ∈ ℝLQ�d, K ∈ ℝLK�d, and V ∈ ℝLV�d.

However, the atomic operations of self-attention require O(L2) in
terms of time and memory complexity, which consequently results
in significant computational consumption for Transformer on
resource-constrained edge devices for CGMs.

Previous works[20,21,37] have attempted to uncover the inherent spar-
sity in the probability distribution of self-attention. Consequently, the
query attention for each row can be defined as a probabilistic form
of a kernel smoother.[38]

f ðqiÞ ¼
X
j

exp
�
qikTj

. ffiffiffi
d

p �
P

lexp
�
qikTl

. ffiffiffi
d

p � vj (5)

pðkjjqiÞ ¼
exp
�
qikTj

. ffiffiffi
d

p �
P

lexp
�
qik

T
l

. ffiffiffi
d

p � (6)

It was discovered that the attention scores exhibit a long-
tail distribution effect,[20,39] whereby a small number of query
weights predominantly dictate the generation of results. Then,
selective strategies can be designed for p(kj|qi) to reduce the
computational redundancy of Transformer. Therefore, we
employ the ProbSparse[20] self-attention mechanism to select
core attentions, thereby decreasing computational complexity.
This approach also reduces the risk of overfitting, enhancing
robustness for clinical scenarios. The process of ProbSparse is
shown in Figure 2 and Kullback–Leibler (KL) divergence was
used to distinguish the salient queries.

Fðqi,KÞ ¼ maxj
qik

T
jffiffiffi
d

p
( )

� 1
LK

XLk
j¼1

qik
T
jffiffiffi
d

p (7)

Zhou et al.[20] have proven that the computation of F(qi,K )
holds the boundary relaxation and is also under the long tail dis-
tribution. So, we only randomly sample UK= c� log LK weights

from K to do dot-product for F(qi,K ), where c is a constant.
Finally, the attention computation is given as

PSAðQ ,K ,VÞ ¼ Softmax
Q 0KTffiffiffi

d
p

� �
V (8)

where Q 0 is the selected query weight matrix, which is of the
same size as Q but contains only Uq queries. Under the control
by c,Uq= c� log LQ, and the remaining queries are not involved
in the computation, being set to the mean of V. This approach
ensures that the final computational complexity is only O(L log
L). Finally a 1D convolution and pooling is applied in each
encoder layer for downsampling to extract important attentional
features in the BG time series, which can be seen in Figure 2.
The first attention block in decoder uses the same ProbSparse
self-attention as in encoder, and the second block is a vanilla
cross-attention computation.

3.3. Uncertainty Estimation

Recent works[18,40] on time series prediction using autoregres-
sion Transformer is based on quantile regression for output com-
putation, allowing the use of uncertainty analysis. Also, we
observed that the initial sampling process of K in ProbSparse
self-attention is random, which is akin to performing a dropout
operation within the attention kernel during inference.[41–43]

Such a computational pattern endows our model with uncer-
tainty characteristics[42] (shown in Figure 3). We define that y*

is the observed output corresponding to input x*, and the input
and output sets are X, Y. Thus the approximate predictive distri-
bution of is given by

qðy�jx�,X ,YÞ ¼
Z

pðy�jx�,wÞpðwjX ,YÞdw (9)

where w ∈ fWigmi¼1 is the initial random variables for a model
with m layers. Typically, analytical evaluation of the distribution
p(w|X, Y ) is difficult. Therefore, following the methodologies of
previous work,[41] we define an approximate variational distribution
q(w), which is structurally more amenable to evaluation. Our aim is
for this approximate distribution to closely resemble the posterior
distribution obtained from the full Gaussian process. To achieve
this, we approximate the distribution through KL divergence

KLðqðwÞjpðwjX ,YÞÞ (10)

leading in the approximate predictive distribution

qðy�jx�Þ ¼
Z

pðy�jx�,wÞqðwÞdw (11)

Specifically, we sampled T sets of realization vectors from
the Bernoulli distribution, denoted as zt1, : : : , z

t
L
T
t¼1 under

fWt
1, : : : ,W

t
mgTt¼1. So, we can estimate the expectation as

Eqðy�jx�Þðy�Þ �
1
T

XT
t¼1

ŷ�ðx�,Wt
1, : : : ,W

t
mÞ (12)

This is a Monte Carlo integration.[43] Eventually, the network is
approximated to fit the desired output by performing T forward
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passes in the inference phase and averaging the results as output.
To quantify the uncertainty analysis of the model predictions and
further improve the BG prediction confidence of the model, we
estimate the prediction log-likelihood by Monte Carlo integration

log p y�jx�,X ,Yð Þ � log
1
T

XT
t¼1

pðy�jx�,wtÞ
 !

(13)

where wt ∈ qðwÞ. And for the regression task[41] as BG predic-
tion, we have

log pðy�jx�,X ,YÞ � log sumexp � 1
2
τjjy � y�jj2

� �
� logT

� 1
2
log 2π � 1

2
log τ�1

(14)

where τ is the precision parameter. Excessive uncertainty, charac-
terized by substantial observation noise or, conversely, minimal
model precision τ, incurs significant penalties due to the final term
in the predictive log-likelihood. Contrarily, a model exhibiting over-
confidence, characterized by disproportionate precision in compar-
ison to its mean estimation, is subject to penalization by the initial
term. The integration of the ProbSparse self-attention mechanism
into the Transformer model has facilitated the quantification and
subsequent reduction of uncertainty, thereby augmenting the
model’s predictive reliability. This development holds significant
implications in clinical settings, especially concerning therapeutic
interventions and routine BG monitoring in patients.

3.4. One-Step Generative Head

To provide patients with sufficient time and early warnings for
potential abnormal glucose events, it is necessary to predict future
BG changes over as long a horizon as possible. Traditional meth-
ods predominantly employ RNN[14] and their variants[15,16] to
develop sequence-to-sequence architectures. As shown on the left
in Figure 4, whether it is RNN series models or the dynamic
decoding form of the Transformer,[17] AR methods are used for

prediction.While these can achieve precise short-term predictions,
in LTPH tasks of 45 and 60min, performance often degrades due
to error spreading. Therefore, we adopt the same generative pre-
diction head as recent works,[20,44,45] specifically through a learn-
able fully connected layer to generate future predictions in one
step (Figure 4 right). The advantages of one-step head will be fur-
ther discussed in Section 6.

4. Benchmark Construction

4.1. Datasets

To evaluate the performance of different BG prediction models,
we developed a benchmark evaluation entirely based on open-
source datasets. In pursuit of creating a balanced and exhaustive
evaluation dataset, we incorporated three clinical datasets along
with a dataset comprising virtual patients. Table 1 lists the demo-
graphic and clinical characteristics of these datasets.

4.1.1. OhioT1DM Dataset

The OhioT1DM dataset[26] encapsulates a comprehensive collec-
tion of data from 12 individuals with T1D over an eight-week
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period. This dataset includes CGM records, insulin dosing infor-
mation, and physiological sensor data from devices like the
Medtronic Enlite CGM and Medtronic 530 or 630 G insulin
pumps. Some participants additionally utilized wearable devices
such as the Basis Peak or Empatica Embrace wristbands to gather
vital sign data. It is structured into a training set and a test set,
constituting �80% and 20% of the total data, respectively.

4.1.2. D1NAMO

The D1NAMO dataset was collected as part of the D1NAMO
project.[35] This dataset comprises diverse data from 29 individ-
uals, including 20 healthy subjects and 9 diabetic subjects. All
participants were equipped with uniform wearable devices, the
Zephyr BioHarness 3 chest strap. The dataset is renowned for
its comprehensiveness, encompassing not only CGM and insulin
data but also 34 physiological indicators such as electrocardio-
gram (ECG) signals, respiratory patterns, accelerometer output,
skin temperature, and annotated food images.

4.1.3. ShanghaiT1DM

The ShanghaiT1DM datasets[34] originate from 12 patients with
type 1 diabetes in Shanghai. These datasets amalgamate a com-
prehensive array of information, including the patients’ clinical
profiles, laboratory results, and medication records. Notably, they
feature CGM readings spanning 3 to 14 days, along with daily
dietary data.

4.1.4. UVA-Padova

The UVA/Padova T1DMS[36,46] is an advanced simulation tool
capable of accurately replicating real-life scenarios, including var-
iations in dietary intake, scheduling, and insulin dosages. It also
facilitates the detection and quantification of episodes of hypergly-
cemia and hypoglycemia. By precisely controlling experimental

parameters and minimizing the calibration phase, the UVA/
Padova T1DMS enhances the efficiency of diabetes research.

5. Experimental Section

5.1. Prediction Tasks and Metrics

Our analysis encompassed diverse PHs, including intervals of
15, 30, 45, and 60min. In this pursuit, we adopted comprehen-
sive metrics in the sphere of BG prediction. These included the
RMSE, mean absolute error (MAE), and MAPE, calculated by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yi � yið Þ2
vuut (15)

MAE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

jyi � yij
vuut (16)

MAPE ¼ 1
N

XN
i¼1

���� yi � y
yi

����
 !

� 100% (17)

where y denotes the true value of BG and y denotes the forecast-
ing outputs. We also included Clark error grid (CEG) to build a
confident benchmark metric, which were critical factors in real-
world applications, where the timeliness of predictions could
have substantial implications on patient outcomes.[47]

5.2. Model Configurations

In UVA-Padova stimulator, we generated 12 virtual patients
(4 children, 4 adolescents, and 4 adults) and produced 56 days
of CGM data using Dexcom(seed= 1). The input for the
OhioT1DM, UVA-Padova, and ShanghaiT1DM datasets com-
prised 3D time series data (CGM, insulin, carbohydrate intake),
while the D1NAMO dataset includes 25D data (incorporating

Table 1. Datasets characteristics.

Characteristics OhioT1DM UVA-Padova ShanghaiT1DM D1NAMO

Age [years] 20–80 7–68 57.83� 11.12 20–79

Patients 12 30 30 9

Mean glucose level [mg dL�1] 158.53(�16.90) 122.07(�12.67) 166.51(�31.94) 151.41(�36.43)

Median glucose level [mg dL�1] 151.75(�18.52) 121.40(�15.36) 161.04(�32.63) 143.44(�37.14)

Insulin regimen (CSII/MDI) MDIþ CSII CSII CSII MDI

Gender (female/male) 5/7 */* 7/5 3/6

TIR [%] 62.6(�9.9) 85.4(�11.2) 54.7(�14.5) 57.7(�18.4)

TBR [%] 4.0(�3.1) 7.1(�7.0) 7.5(�7.0) 12.4(�18.6)

TAR [%] 33.4(�18.52) 7.5(�7.9) 37.8(�18.8) 30.0(�17.5)

Monitoring interval [min] 5 5 15 5

Total measurement length [h] 15 967 40 322 1308 1550

CSII: continuous subcutaneous insulin infusion; MDI: multiple daily injection.
TIR: time in range (≥70, ≤180mg dL�1); TBR: time below range(<70 mg dL�1); and TAR: time above range(>180 mg dL�1).
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additional physiological information). We engaged in multi-
modal signal learning, with the output being future BG. To pre-
serve the originality and fairness of the datasets, no artificial
preprocessing was applied to the data. All datasets were divided
into training, validation, and test sets in a ratio of 6.4:1.6:2. The
OhioT1DM dataset had already been split into training and test
sets in an 8:2 ratio, and we further subdivided 20% of the training
set to serve as the validation set.

Gluformer[18] and LSTM[15] were chosen as baseline models.
Because Gluformer is the most recent BG prediction model
based on Transformer and achieved state-of-the-art (SOTA) per-
formance prior to our work, and LSTM had the widest applica-
tion as the model backbone many BG prediction efforts. Then,
we surveyed the latest and best-performing works on different
datasets for comparison. Within the OhioT1DM dataset, we
selected GluNet,[28] Fast-adaptive and Confident Neural Network
(FCNN),[32] Seasonal trend integrated predictor (STIP),[48] and
Transformer-Glucose[19] for comparison. In the UVA-Padova
dataset, ISRKN[49] was chosen. Currently, there were no deep-
learning models available for comparison in the D1NAMO data-
set. For the ShanghaiT1DM dataset, Heterogeneous temporal
representation (HETER) Predic[50] was chosen for comparison.
Since some studies have not released their models and only vali-
dated on specific metrics and prediction horizons, we limited our
comparison to the results reported in previous studies. The
recent emergence of general time series models has demon-
strated formidable predictive capabilities. TimesNet,[44] in partic-
ular, has exhibited superior performance across multiple time
series datasets. Consequently, we also adapted TimesNet to the
task of BG prediction, facilitating a comparison with our model.

We developed out model with Pytorch 2.0.1 on NVIDIA GTX
2080 Ti GPUs, and the Adam optimizer was used for training.
The number of training epochs was set to 30, with a patience
setting of 5, employing an early stop mechanism to reduce
the risk of model overfitting and enhance generalization ability.
Mean squared error was used as the universal loss function for
model training.

5.3. Results

5.3.1. Prediction Performance on 4 Datasets

Table 2–5 respectively summarize the results of our model and
the comparative models under 4 different PHs across the
OhioT1DM, UVA-Padova, D1NAMO, and ShanghaiT1DM data-
sets, based on 5 evaluation metrics. Notably, in the LTPH tasks
(45min, 60min) and the 30min prediction task across the 4 data-
sets, our model achieved the best performance on all evaluation
metrics. Compared to previous works in 60min BG prediction
on 4 datasets, our model achieved RMSE of 10.86, 15.33, 20.46,
and 13.75mg dL�1, respectively, which demonstrated at least a
20% improvement than previous BG models and also achieved
the superior leading results on MAE and MAPE. This indicated
that our model’s predictions more closely aligned with the actual
trends in glucose changes. In the CEG analysis, the prediction
errors of our model were concentrated in zone A, enhancing
the safety of BG prediction by 0.8%–14.4%, which was highly
significant for clinical diagnosis safety. Meanwhile, we observed
that Gluformer achieved superior performance in the 15min

tasks on three datasets, but the gap with our method was mini-
mal. Even our model showed higher safety in the CEG results for
the 15min prediction in OhioT1DM. This was attributed to
Gluformer’s AR prediction method, which exceled in shorter
time horizon but could cause error spreading in the more crucial
LTPH tasks. The TimesNet model also exhibited commendable
performance in BG tasks, ranking just behind our model in
LTPH predictions. Particularly in the 45min prediction task for
the D1NAMO dataset, it achieved a higher proportion in Zone A
of the CEG. This was attributed to the InceptionNet[51] convolu-
tional feature extraction capability incorporated in TimesNet,
which enhanced its learning ability for datasets like D1NAMO
that consisted of dozens of physiological features. However,
this came at the cost of increased model size and longer infer-
ence time.

It was worth noting that our experiments revealed the same
findings as previous study,[32] in the CEG, Zone C is typically very
small, while Zone D exhibits spiked values. Zone D primarily
represents scenarios where the actual CGM data indicate
extremely high or low BG levels, far outside the normal range,
while the model’s predicted values remain within the standard
range. Due to these extreme reference values, errors in Zone D
tend to escalate significantly. In contrast, Zone C represents
cases where the actual values are within the normal range, but
the model’s predictions deviated considerably. However, errors
in Zone C were usually minimal because the model performed
well within the normal BG range.

Figure 5 illustrates the 30min BG prediction trajectories for a
patient in the OhioT1DM dataset over 2 days. Compared to the
traditional LSTM model (left panel), our model (right panel)
demonstrated a superior ability to capture future trends and
accurately predict hyperglycemic or hypoglycemic events within
the next 30min. A comparison of the confidence interval predic-
tions for different models is presented in Table 6, where our
architecture achieved more robust confidence levels across
various prediction horizons. Moreover, Figure 6 compares the
RMSE performance of our model with Gluformer, TimesNet,
and LSTM across 4 datasets. Consistent with the results in
Table 1, 6, and 2, our model demonstrated lower prediction errors
and higher predictive robustness. This was particularly evident in
LTPH tasks, where our model showed lower mean (dashed line in
Figure 6) and median (solid line in Figure 6) errors, as well as
reduced prediction variance. In general, our model shows better
performance than previous BG prediction works on 4 public CGM
datasets, greatly improving the accuracy of the LTPH task.

5.3.2. Transfer and Fine-Tuning Results

Even though a model might achieve excellent performance on
the test set within the same dataset, pretrained models still faced
challenges when applied to real patient scenarios. An important
solution was to use transfer learning and fine-tuning learning
techniques[32,33] to achieve patient-based personalized predictions.

Then, we pretrained four representative models on 12 virtual
patients in the UVA-Padova simulator, including vanilla LSTM,
Gluformer, TimesNet, and the framework proposed in this work.
We then conducted cross-validation tests on 12 actual patients in
the OhioT1DM dataset. The results of the cross validation,
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displayed in Figure 7a, indicated that Gluformer maintained sta-
ble performance at the 15min prediction interval but experi-
enced significant losses at 45–60min. TimesNet remained
relatively stable, and our model exhibited higher cross-prediction
accuracy overall. Figure 7b compares the accuracy drop with
the results in Table 3, showing a performance decline across
all models; however, our model consistently demonstrated stabil-
ity across four prediction horizons. The results displayed in
Figure 7 highlighted the robustness of our model in BG predic-
tion, showcasing its predictive performance across different
training and testing datasets. Additionally, although LSTM gen-
erally performed modestly, it did not exhibit significant perfor-
mance degradation in cross-testing, likely due to its simpler
structural design and fewer involved parameters.

We then fine-tuned the models that were pretrained on silicon
patients. The specific steps involved were as follows: first, we
selected data from 10 days from 12 patients in OhioT1DM training
dataset. This data was then used to fine-tune the pretrained mod-
els. Our model utilized a decoder-only fine-tuning approach, while
the LSTM, Gluformer, and TimesNet models underwent full-
model fine-tuning. Finally, we validated them on the test dataset.
As illustrated in Figure 7c, after fine-tuning with a small sample,

our model still exhibits the best performance across different PHs,
with a notably superior lead in LTPH. In Figure 7d, we customized
the pretrained prediction model for each patient. Post-finetuning,
it was observed that the model maintained a lower RMSE error.
However, the unified fine-tuning model for the 12 patients dem-
onstrated higher prediction accuracy than individual patient fine-
tuning, likely due to the larger data volume and more diverse BG
dynamic features provided by regional and group data, resulting in
more effective fine-tuning (as shown in Figure 7c). This insight
suggested that in the future, group-based personalized fine-tuning
for patients with similar ages and physiological characteristics could
enhance the precision and individualization of BG predictions.

In our approach to transfer learning, we fine-tuned only the
decoder while keeping the encoder parameters unchanged.
This method required adjusting only a small number of param-
eters, allowing the model to adapt to new data more quickly. We
compared three strategies: using only the encoder, using only the
decoder, and fine-tuning the entire model. Table 7 demonstrates
that fine-tuning only the decoder achieved performance compa-
rable to full-model of encoder-only fine-tuning on small datasets,
while preserving the model’s generalization ability on large-
scale data.

Table 2. Prediction performance on OhioT1DM.

Prediction Horizon Methods RMSE [mg dL�1] MAE [mg dL�1] MAPE [%] CEG distribution [%]

A B C D E

15min LSTM 7.25 5.06 4.27 99.23 0.71 0.00 0.06 0.00

Gluformer[18] 3.51 3.51 2.03 99.73 0.24 0.00 0.03 0.00

TimesNet[44] 4.77 3.15 2.63 99.71 0.28 0.00 0.01 0.00

Ours 4.23 2.72 2.29 99.78 0.21 0.00 0.01 0.00

30min GluNet[28] 10.73 – – – – – – –

FCNN[32] 18.64 13.25 – 89.80 8.96 0.01 1.22 0.01

STIP[48] 13.70 – – 90.20 9.4 0.40 0.00 0.00

LSTM 11.94 8.73 7.37 94.92 4.75 0.00 0.33 0.00

Gluformer[18] 8.60 5.79 4.67 98.71 1.20 0.00 0.09 0.00

TimesNet[44] 7.41 4.66 3.89 98.66 1.29 0.00 0.05 0.00

Ours 6.82 4.49 4.49 98.90 1.07 0.00 0.03 0.00

45min LSTM 15.59 11.65 9.89 88.55 10.74 0.00 0.71 0.00

Gluformer[18] 14.79 11.02 9.95 97.19 2.61 0.00 0.20 0.00

TimesNet[44] 9.83 6.31 5.26 96.70 3.20 0.00 0.10 0.00

Ours 9.11 5.94 4.97 97.30 2.62 0.00 0.08 0.00

60min GluNet[28] 22.65 – – – – – – –

FCNN[32] 31.07 22.86 – 72.58 24.39 0.16 2.85 0.02

Transformer-Glucose[19] 17.88 – – – – – – –

STIP[48] 21.79 – – 76.60 22.10 1.20 0.00 0.00

LSTM 18.33 13.93 11.89 82.98 16.23 0.00 0.79 0.00

Gluformer[18] 17.93 13.41 11.01 94.78 4.94 0.00 0.28 0.00

TimesNet[44] 11.99 7.83 6.54 94.25 5.58 0.00 0.17 0.00

Ours 10.86 7.05 6.07 95.54 4.19 0.00 0.03 0.00

The original work has not yet reported this performance metric.
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Table 3. Prediction performance on UVA-Padova.

Prediction Horizon Methods RMSE [mg dL�1] MAE [mg dL�1] MAPE [%] CEG distribution [%]

A B C D E

15min LSTM 16.81 12.31 15.43 0.00 85.36 11.84 2.80 0.00

Gluformer[18] 5.21 4.07 6.04 97.77 1.76 0.00 0.47 0.00

TimesNet[44] 8.79 5.97 8.04 96.76 2.43 0.00 0.81 0.00

Ours 5.48 4.79 6.10 97.88 1.59 0.00 0.53 0.00

30min ISRKN[49] 11.14 – – – – – – –

LSTM 26.20 19.16 25.07 68.09 24.24 0.00 7.67 0.00

Gluformer[18] 12.81 10.23 11.57 91.64 6.71 0.00 1.65 0.00

TimesNet[44] 14.08 9.66 12.85 89.83 8.00 0.00 2.16 0.00

Ours 10.07 7.65 10.48 92.06 5.98 0.00 1.96 0.00

45min LSTM 31.23 22.89 31.02 60.32 29.09 0.00 10.57 0.03

Gluformer[18] 18.79 14.19 14.67 87.49 10.17 0.00 2.34 0.00

TimesNet[44] 17.13 12.01 16.20 84.96 11.91 0.00 3.12 0.00

Ours 13.42 8.48 13.71 88.03 8.90 0.00 3.07 0.00

60min ISRKN[49] 16.00 – – – – – – –

LSTM 34.28 25.7 36.46 54.58 31.68 0.02 13.68 0.03

Gluformer[18] 25.16 19.41 22.08 83.71 13.19 0.00 3.09 0.01

TimesNet[44] 19.46 13.79 18.67 81.04 15.00 0.00 3.95 0.00

Ours 15.33 11.21 16.78 85.33 10.92 0.00 3.75 0.00

The original work has not yet reported this performance metric.

Table 4. Prediction performance on D1NAMO.

Prediction Horizon Methods RMSE [mg dL�1] MAE [mg dL�1] MAPE [%] CEG distribution [%]

A B C D E

15min LSTM 15.57 12.89 13.40 81.38 8.54 0.00 10.08 0.00

Gluformer[18] 9.47 7.02 6.69 96.67 2.52 0.00 0.81 0.00

TimesNet[44] 10.87 7.45 7.10 93.83 5.53 0.00 0.64 0.00

Ours 9.41 7.11 6.95 95.71 3.24 0.00 1.04 0.00

30min LSTM 19.54 15.81 16.24 71.71 18.38 0.00 9.91 0.00

Gluformer[18] 18.29 12.49 10.46 86.46 11.96 0.00 1.58 0.00

TimesNet[44] 14.54 9.85 9.48 88.98 10.00 0.00 1.00 0.01

Ours 14.31 9.73 9.98 86.62 10.55 0.00 2.83 0.00

45min LSTM 23.37 18.64 19.12 64.83 25.16 0.00 10.01 0.00

Gluformer[18] 21.48 16.20 13.98 77.83 17.64 0.00 4.51 0.01

TimesNet[44] 17.69 11.84 12.37 83.92 14.34 0.00 1.71 0.03

Ours 17.58 12.89 12.64 78.48 17.64 0.00 3.88 0.00

60min LSTM 26.29 20.5 21.08 59.87 30.16 0.00 9.97 0.00

Gluformer[18] 24.91 19.22 17.28 78.75 18.77 0.01 2.42 0.05

TimesNet[44] 21.12 14.08 15.29 74.03 21.43 0.00 4.53 0.00

Ours 20.46 13.79 19.67 81.04 15.00 0.00 3.95 0.00

The original work has not yet reported this performance metric.
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5.3.3. Model Quantization and Deployment

Edge computing neededmore reliable real-time services on wear-
able devices with exceptionally low latency in output, unfettered
by internet connectivity constraints. Such advancements were
particularly crucial in the realm of intelligent BG management
systems, catering to both everyday monitoring and clinical

treatment. Our aim is to deploy these networks on edge devices,
like smartphones, smartwatches, and CGMs, to facilitate real-
time computation.[52,53] As shown in Figure 8, we quantized
32-bit floating-point arrays into 8-bit and 4-bit fixed-point by
post-trained quantization methods with per-tensor type. This
process substantially reduced the model size while maintaining
stable accuracy,[54] which achieved the 3.67 and 6.13 times model

Table 5. Prediction performance on ShanghaiT1DM.

Prediction Horizon Methods RMSE [mg dL�1] MAE [mg dL�1] MAPE [%] CEG distribution [%]

A B C D E

15min HETER[50] 5.70 4.06 3.30 – – – – –

LSTM 7.54 5.35 4.10 99.04 0.89 0.00 0.07 0.00

Gluformer[18] 9.47 7.02 6.69 96.67 2.52 0.00 0.81 0.00

TimesNet[44] 6.81 4.85 3.79 99.26 0.51 0.00 0.23 0.00

Ours 5.32 3.76 3.01 99.77 0.23 0.00 0.00 0.00

30min HETER[50] 10.11 6.72 5.40 – – – – –

STIP[48] 14.56 – – 90.60 8.90 0.50 0.00 0.00

LSTM 13.96 10.00 7.84 93.75 5.75 0.00 0.50 0.00

Gluformer[18] 9.26 6.21 4.68 97.79 2.16 0.00 0.05 0.00

TimesNet[44] 14.54 9.85 9.82 88.98 10.00 0.00 1.00 0.01

Ours 8.32 5.47 4.36 98.52 1.34 0.00 0.14 0.00

45min LSTM 18.98 13.67 10.82 86.73 12.51 0.00 0.75 0.00

Gluformer[18] 21.21 14.28 14.21 78.75 18.77 0.01 2.42 0.05

TimesNet[44] 12.17 7.99 6.02 95.29 4.59 0.00 0.12 0.00

Ours 11.19 7.43 5.72 96.17 3.56 0.00 0.28 0.00

60min HETER[50] 16.59 10.98 8.90 – – – – –

STIP[48] 24.12 – – 75.70 21.90 2.30 0.10 0.00

LSTM 23.08 16.81 13.45 79.70 19.34 0.00 0.97 0.00

Gluformer[18] 21.48 16.20 13.98 77.83 17.64 0.00 4.51 0.01

TimesNet[44] 15.17 9.97 7.52 92.42 7.40 0.00 0.18 0.00

Ours 13.74 9.01 6.94 94.10 5.55 0.00 0.34 0.00

The original work has not yet reported this performance metric.

Figure 5. Prediction visualization (PH= 30min). The left figure visualizes the LSTM prediction results, while the right side depicts our model. The red-
dashed line represents the predicted BG values, the solid black line indicates the actual BG levels, the green-dashed line marks the hypoglycemic thresh-
old, and the blue-dashed line denotes the hyperglycemic threshold. The purple-shaded area signifies the 95% prediction confidence interval.
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size compression. On edge device inference, fixed-point compu-
tations enhanced processing speed and efficiency.[55]

We selected a field-programmable gate array (FPGA) as the
platform for deploying quantized models on edge devices
due to its high flexibility and low power consumption. These
characteristics made it particularly suitable for deep-learning
computations in edge environments, aligning with the require-
ments of edge-based boundary grid computing scenarios.[56,57]

Deployment verification was conducted on the ECE-EMBD devel-
opment board equipped with a ZYNQ 7020 chip. This board fea-
tured a dual-core ARM Cortex-A9 processor, a processing system
with 512MB DDR3 memory, and programmable logic equipped
with an XC7Z020-CLG400-1 series chip. The model was
deployed on the FPGA platform using a custom toolchain.[56]

Table 8 illustrates the accuracy (30min) and model size compres-
sion following the quantitative deployment of both Int 8 and Int 4
bit width.

Specifically, to achieve on-chip deployment,[56] a two-step pro-
cess is employed: first, performing 8-bit quantization and com-
pilation after model training, and then converting each layer into
its respective arithmetic module. To efficiently deploy neural net-
work operators, the Img2Col operation was applied, converting
layer data from noncontiguous to contiguous storage, thereby

simplifying data transfer and computation. Parallel stacking
and cascading mechanisms for multiplication and addition were
then employed to enable simultaneous element-wise computa-
tions on large datasets. Large matrices were divided into smaller
blocks, transferred to the chip, processed within these blocks,
and subsequently reassembled, alleviating the resource con-
straints of the FPGA. As illustrated in Figure 8, we began by
quantizing the model weights

W int ¼ round
W float

s

� �
(18)

Wq ¼ clamp �2b�1, 2b�1 � 1,W int
� �

(19)

where

clampða, b, xÞ ¼
8<
:
a
Wi
b

if
if
if

Wi ≤ a
a ≤ Wi ≤ b
Wi ≥ b

(20)

where Wfloat denotes the original float type weights; s represents
the scale factor, which maps floating-point values to integers and
is generally set as the maximum absolute value in the weight
matrix; b denotes the quantization bit width, such as 4 or 8 bits;
and Wq is the weight matrix post-quantization.

6. Discussion

We evaluated all the metrics on public datasets, enabling a com-
prehensive and fair comparison of BG prediction models, along
with cross-validation and transfer fine-tuning. From the experi-
mental analysis, it is evident that our proposed model effectively
addresses the LTPH issue in BG prediction tasks. Compared to
existing BG prediction models and other time series models, our
model demonstrates leading performance across all 4 datasets. In

Table 6. Comparison of 95% confidence interval coverage proportions on
OhioT1DM.

Prediction
horizons

LSTM [95%] Gluformer [95%] TimesNet [95%] Ours [95%]

15min 89.0 94.5 93.0 93.8

30min 85.5 90.8 92.0 92.5

45min 80.5 85.0 91.5 92.5

60min 76.0 80.0 88.1 90.2
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10
20
30
40
50
60
70
80

0

OhioT1DM

R
M

SE
 m

g/
dL

Prediction Horizon
15 min 30 min 45 min 60 min

10
20
30
40
50
60
70
80

0

UVA-PADOVA

R
M

SE
 m

g/
dL

Prediction Horizon

Ours
Gluformer
TimesNet
LSTM

15 min 30 min 45 min 60 min

10
20
30
40
50
60
70
80

0

ShanghaiT1DM

R
M

SE
 m

g/
dL

Prediction Horizon
15 min 30 min 45 min 60 min

10
20
30
40
50
60
70
80

0

D1NAMO

R
M

SE
 m

g/
dL

Prediction Horizon

Ours
Gluformer
TimesNet
LSTM

Ours
Gluformer
TimesNet
LSTM

Ours
Gluformer
TimesNet
LSTM

(a) (b)

(c) (d)

Figure 6. Comparative analysis of glucose level prediction performance. a–d) The RMSE box plots of four models across four time windows (15, 30, 45,
60min). Dashed lines represent the mean RMSE values, solid lines indicate the median RMSE, and the boundaries of the box plots denote the error
range. Our model consistently exhibits the lowest error across all evaluations and demonstrates a more concentrated and stable prediction range.
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the prediction of 60min BG trends, RMSE values were obtained
at 10.86, 15.33, 20.46, and 13.74mg dL�1, respectively. The max-
imum reduction in the error of glucose LTPH prediction was
39.4%. We attribute the superiority of our model’s performance
to two main factors.

First, the application of one-step generative head allows the
model’s output to be generated in one time. While traditional
AR methods may perform well in short-term predictions
horizons, the accumulation of errors in long-term can impact
accuracy and introduce more risks in clinical applications. As
shown in Figure 9, we compared the error spreading effect of
Transformer using an AR head (top) versus an one-step genera-
tive head (bottom). The single-step generation head model main-
tains a relatively stable error at the 9th (45min) and 12th (60min)

steps, whereas the error in the AR prediction head accumulates
and diffuses, leading to performance loss in LTPH tasks. Table 9
also highlights the differences in inference iterations and accu-
racy between the two prediction heads. Single-step inference ena-
bles more efficient and faster predictions while maintaining
lower long-term error, whereas the AR method incurs higher
computational costs. Specifically, for short-term predictions
(e.g., prediction windows less than 15min), the RMSE for the
AR head is 3.60, compared to 4.35 for the single-step head—a
difference of less than 1mg dL�1. However, for longer prediction
windows (e.g., step sizes greater than 6 and up to 12), the
single-step head significantly outperforms the AR head. This
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Figure 7. Transfer and fine-tuning comparison. a) The error of the 4 models trained in virtual patient on OhioT1DM dataset; b) the loss of 3 models
performance tested across datasets; c) the prediction error after fine-tuning; and d) a plot of prediction error of our model after personalized fine-tuning
by 10 days of specific patient data.

Table 7. Parameters and RMSE loss for transfer learning of different
modules across datasets.

Tuning module None Full-model Encoder-only Decoder-only

Parameters [Mb] – 46.57 18.21 28.36

RMSE
[mg dL�1, 60 min]

14.84 13.32 15.60 12.63

Original Model

Float 32

Quantized Model
Quantization Module

weight/activation
Int 4/8

weight/activation

Deploy
on

Device

Figure 8. Network quantization and deployment flow. The full-accuracy model compresses the weights to 4/8 bits through quantization and can subse-
quently be deployed on edge computing chips for real-time glucose prediction.

Table 8. Quantized performance of our proposed model on different
edged devices.

Precision RMSE 30min
[mg dL�1]

Model
size [Mb]

Compression
ratio

Device

Ours(Float 32) 6.82 46.57 1.00� Graphics Processing
Unit (GPU)

Ours(Int 8) 6.83 12.68 3.67� FPGA

Ours(Int 4) 7.51 7.63 6.13� FPGA
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indicates that the single-step generation head excels in long-term
and more challenging prediction tasks, which is critical for BG
forecasting. In BG monitoring and alert systems, the ability to
predict abnormalities over longer time windows is particularly
important for improving patient treatment and preventive care.

The second factor is the uncertainty-estimated analysis based
on the ProbSparse self-attention structure, which has enhanced
the predictive confidence of the model. The random selection of
key in the ProbSparse self-attention computation introduces
uncertainty distributions into the model’s network. By quantify-
ing the uncertainty of the output, we have reduced the error risk
of the model’s predictions, further ensuring the robustness of
the model. Figure 10 illustrates the calibration plot for the
60min predictions of our model on the OhioT1DM dataset.
We observe that the confidence levels of the model outputs
are close to the expected levels, demonstrating the exceptional

predictive robustness of our model. In the output phase, we
employed the average of 5 sampling iterations as the prediction
result. Although this introduces additional computational overhead,
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Figure 9. Illustration of prediction error spreading. The upper graph shows the error accumulation in autoregressive predictions, while the lower graph
depicts the error accumulation in one-step generative head predictions. The vertical axis represents the ratio of each sample’s error to the maximum
RMSE in 60min prediction (where the maximum error is the highest RMSE observed in two models).

Table 9. Error spreading analysis.

PHs [min] Autoregression head One-step generative head

RMSE 60min
[mg dL�1]

Inference
Steps

RMSE 60min
[mg dL�1]

Inference
Steps

15 3.6 3 4.35 1

30 8.55 6 6.97 1

45 12.38 9 9.16 1

60 16.25 12 11.34 1

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, 7, 2500235 2500235 (13 of 16) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2025, 12, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202500235, W

iley O
nline L

ibrary on [03/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


it still retains an advantage in comparison to the computational con-
sumption of the AR prediction in LTPH. Simultaneously, due to the
unique filtering mechanism employed in the ProbSparse self-
attention computation, redundant calculations in the Transformer
model are reduced. The computational time complexity is decreased
from O(L2) to O(LlnL). This improvement makes the deployment of
Transformer models on edge devices more feasible and user-friendly.

Finally, we validated the robustness of our model through
comparative experiments and further confirmed its generaliza-
tion ability and clinical application potential through fine-tuning
with a small sample size. Our model demonstrates robust gen-
eralization and transfer capabilities, as evidenced by its exem-
plary performance on clinical datasets after being trained on a
virtual patient dataset, shown in Figure 7a,c. The model’s perfor-
mance is further enhanced after fine-tuning. We observed that
models achieving SOTA performance in the general time series
prediction domain also exhibit commendable performance. As
indicated in Table 5, the TimesNet model exhibits strong learn-
ing abilities in multivariable features, achieving a leading posi-
tion in the 45min CEG evaluation.

Additionally, to assess the real-time inference capabilities of
BG prediction models on actual edge chips, we deployed our
compressed model on an FPGA, verifying its inference capabili-
ties in mobile scenarios. This confirms that our model is well-
suited for edge computing in smartphones, smartwatches, or
CGM devices, meeting the daily usage needs of patients and truly
realizing intelligent BG prediction in daily life.

7. Conclusion

In this study, we address the challenge of enhancing the safety
of closed-loop CGM systems by improving the accuracy of
long-term glucose predictions. We propose a uncertainty-

estimated ProbSparse-Transformer for BG prediction, yielding
significant enhancements in LTPH tasks. This model integrates
a ProbSparse self-attention mechanism with uncertainty analysis
and a one-step generative head, adeptly countering the error
spreading issues commonly encountered in RNNs and vanilla
Transformers. Moreover, recognizing the constraints of limited
dataset sizes and the need for personalized predictions, we
refined our model’s capabilities through fine-tuning with a small
sample size. Finally, we established an open-source evaluation
benchmark comprising 4 public datasets and 5 predictive met-
rics, contributing to the field of intelligent closed-loop CGMs
to reduce diabetes-related risks.
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