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1. Introduction

Diabetes is a metabolic condition that affects over 500 million
people worldwide. Current projections indicate a concerning
trajectory, and by 2045, nearly 10% of the global population will
be affected by this ailment.[1] At its core, diabetes is characterized
by a dysregulated glucose metabolism, which can trigger a range
of health complications, such as organ dysfunction, tissue dam-
age, and reduction in lifespan. It is important to note that the
scourges of diabetes are not limited to adults only; adolescents
and children are also significantly scourged by this disease.[2]

Diabetes manifests in multiple forms, notably type 1 diabetes
(T1D), where autoimmune responses destroy pancreatic beta
cells, leading to insufficient insulin production.[3] Type 2 diabetes
(T2D) involves insulin resistance that hampers glucose uptake,[4]

while gestational diabetes mellitus (GDM) develops during preg-
nancy in women without prior symptoms.[5] The disease also

includes monogenic syndromes and sec-
ondary diabetes from other conditions.[6]

As shown in Figure 1, this life-sustaining
hormone is administered via injections
or insulin pumps, forming crucial part of
daily care for diabetes patients.[7]

Recent advancements in wearable tech-
nology have revolutionized healthcare,
particularly through the development of
continuous glucose monitoring systems
(CGMs) for diabetes management.[8–10]

Although CGMs are proficient at sensing
glucose levels, they lack therapeutic func-
tions, which has led to the innovation of
closed-loop systems that use monitored
glucose data to regulate insulin dosing.
However, these devices pose both poten-
tial benefits and risks; for instance, exces-
sive insulin administration can result in

hypoglycemia with life-threatening outcomes, emphasizing
the need for precise algorithmic development for practical
deployment. This review focuses on the latest progress in
the rapidly evolving field, integrating emerging artificial
intelligence techniques with traditional CGMs. Deviation from
optimal control can result in abnormal blood glucose levels, car-
rying substantial health risks. It is imperative to recognize that
the severity of T1D goes beyond the daily routine, profoundly
influencing the overall health, well being, and longevity of those
living with this condition.[11,12]

With rapid advancements in technology and biomedical
research, new horizons are emerging. The integration of
wearable devices and artificial intelligence (AI) is a promising
avenue that can revolutionize diabetes care, particularly in
closed-loop control. Our review ventures into this exciting
domain, examining the current state of commercially available
devices, their algorithms, and their potential for achieving
tighter and more responsive glucose control. However, incorpo-
rating wearable technology and AI is not without its hurdles.
Issues related to device accuracy, algorithm robustness, user
safety, and data privacy are just a few of the many concerns that
researchers and clinicians must address. Our review provides a
perspective on the potential benefits and pitfalls of these emerg-
ing technologies. We envision the future iteration of closed-loop
blood glucose (BG) control systems seamlessly integrating
these aspects to emulate the functionality of the natural pan-
creas, commonly referred to as the artificial pancreas (AP) sys-
tem. Devices that collect multiple physiological data, paired
with AI systems, hold the promise of not just managing but
truly optimizing glucose control for individuals with diabetes
(Table 1 and 2).
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Recent advancements in wearable healthcare have led to commercially
accessible continuous glucose monitoring systems (CGMs) for diabetes
management. However, CGMs only monitor glucose levels and lack therapeutic
functions, prompting the development of closed-loop systems that use
monitored glucose levels to guide insulin dosing. While promising, these
devices also pose risks, such as insulin overdosing, which can cause hypo-
glycemia. This review summarizes recent advances in integrating artificial
intelligence methods with conventional CGMs. The developments in wearable
CGMs and progress in insulin delivery technologies are explored, and existing
algorithms for glucose prediction in closed-loop systems are reviewed.
Additionally, emerging trends in optimizing these algorithms to enhance
the safety and security of closed-loop insulin delivery systems are
highlighted.
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2. Wearable Devices for Closed-Loop Control

The landscape of care and treatment for individuals diagnosed
with T1D is rapidly evolving with the emergence of genetically
engineered insulin, advanced glucose monitoring devices, deep
neural networks, and sophisticated closed-loop control systems.
Wearable devices also play a pivotal role in the precise detection
of changes in the body’s physiological characteristics.[10,13] These
devices are designed to be comfortably worn by patients without
disrupting their daily routines, thereby facilitating easier moni-
toring of vital health parameters unobtrusively.

2.1. Continuous Glucose Monitoring

One remarkable innovation in the field of diabetes care is CGMs.
CGMs offer real-time and uninterrupted surveillance of the

body’s glucose levels by measuring the glucose concentration
in the interstitial fluid.[14,15] This technology enables the dynamic
assessment of fluctuations in blood glucose levels. Unlike tradi-
tional methods that require routine fingerstick blood tests,
CGMs operate autonomously, capturing data at regular intervals
ranging from 1 to 5min. The implications of CGMs in diabetes
care are significant, as they empower individuals to maintain a
healthy and balanced lifestyle by providing immediate insights
into their blood glucose levels. This information proves instru-
mental in the meticulous regulation of dietary choices, physical
activity, and timely medication administration.

Presently, advanced CGMs predominantly rely on electro-
chemical methodologies. Some notable CGM products available
in the market include CGMS and its iterative versions by
Medtronic (Minneapolis, MN, USA), Dexcom G6/7 by Dexcom,
Inc. (San Diego, USA), and Medtronic Guardian Sensor 3 by
Medtronic, Inc. (Northridge, USA),[16,17] as detailed in Table 1.
To determine the accuracy of CGMs, mean absolute relative dif-
ference (MARD) serves as a widely utilized performance metric,
which quantifies the discrepancy between glucose concentrations
as measured by CGMs and those determined through blood
sample analysis.[18] Typically, devices exhibiting a lower MARD
value are considered to offer better performance. Moreover,
CGMs demonstrate promise in subcutaneous tissue glucose
monitoring, with some sensors being implanted beneath the
skin. While numerous studies have underscored the potential
of subcutaneous tissue glucose monitoring, it is important to
acknowledge the inherent constraints associated with implant-
able sensors, such as sensor size, shape, duration of implanta-
tion, and biocompatibility.[19]

Meanwhile, researchers have embarked on a quest to identify
and develop alternative CGMs technologies, with a focus on
affordability, invasiveness, and user-friendliness. Various nonin-
vasive methodologies for continuous glucose monitoring are
being explored, including flexible and stretchable sensors,[20–23]

fluid-sampling biochemical sensors,[8,24,25] optical methods
(such as near-infrared spectroscopy),[26,27] and electromagnetic
methods.[28] Notably, commercial systems like SugarBEAT from

Glucose 
Measurement 

  Manual InputInsulin Release

Pump

CGM

Figure 1. Conventional control system for diabetes management.
Conventional system starts with “Glucose Measurement,” incorporates
“Manual Input,” and concludes with “Insulin Release.” This approach
emphasizes manual interventions for insulin administration.

Table 1. Overview of commercially available CGM devices and their features.

Device Company Real time/wireless Connect to insulin pump MARDa) [%] Predictive alarms Frequency

STS Dexcom ✓/✓ ✗ 16 ✗ 5min

G6 Dexcom ✓/✓ ✓ 9 ✓ 5min

G7 Dexcom ✓/✓ ✓ 8 ✓ 5min

Freestyle Navigator Abbott ✓/✓ ✗ No info ✓ 5min

FreeStyle Libre 2 Abbott ✓/✓ ✓ 9 ✓ 5min

FreeStyle Libre 3 Abbott ✓/✓ ✓ 7.9 ✓ 1min

CGMS Gold Medtronic Minimed ✗/✗ ✗ 25 ✗ 5min

Guardian REAL-Time Medtronic Minimed ✓/✓ ✗ 20 ✓ 5min

Paradigm REAL-Time Medtronic Minimed ✓/✓ ✓ 20 ✗ 5min

Medtronic Guardian Connect Medtronic Minimed ✓/✓ ✓ 10 ✓ 5min

SugarBeat Nemaura Medical ✓/✓ ✓ 12.4 ✓ 5min

Eversense Senseonics ✓/✓ ✗ 8.5 ✓ 5min

a)MARD, mean absolute relative difference.
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Nemaura Medical (Loughborough, UK), which employs ionto-
phoresis for measuring interstitial fluid glucose; D-sensor from
DiaMonTech (Berlin, Germany), which uses optical spectros-
copy; and KnowU from Know Labs (Seattle, USA), which uses
radiofrequency technology, are examples of these advancements.
These new CGM systems have the potential to provide more
accurate and objective insights into individuals’ metabolic status
with minimal invasiveness, liberating them from the reliance on
subjective physiological cues and enhancing user comfort.

2.2. Continuous Subcutaneous Insulin Infusion

Complementary to these advancements in glucose monitoring,
a spectrum of insulin delivery devices has been developed to
precisely administer bioactive insulin, helping maintain blood
glucose levels within target ranges of 70–180mg dL�1.[29,30]

The conventional approach involves using insulin syringes,
which require manual insulin filling and injection. This is an
economically advantageous but potentially less precise method.
In contrast, insulin pens offer a more sophisticated approach,
injecting insulin via disposable pen needles and allowing dose
adjustments through a dial or dose knob, ensuring a higher
degree of accuracy and user-friendliness. For instance, the
HumaPen Memoir, introduced by Ignaut et al.[31] is an electronic
reusable insulin pen that provides multidose memory capabili-
ties for storing data about the previous 16 insulin doses. The
InPen system, developed by Bailey et al.[32] exemplifies this tra-
jectory, allowing for Bluetooth-controlled insulin injection.
Alternatively, recent research has focused on microneedle
patch-based insulin delivery devices, which utilize a glucose-
responsive media to control insulin release.[33–35] These devices
have demonstrated significant potential in closed-loop glucose
control systems. For a comprehensive list of these products,
please refer to Table 4.

Improvements have been implemented to enhance the effi-
ciency and patient comfort associated with insulin delivery

systems. In the Diabetes Control and Complication Trial
(DCCT), nearly 40% of participants in the intensive treatment
group benefited from continuous subcutaneous insulin infusion
(CSII) therapy.[36] The latest commercial insulin pumps have
evolved to prioritize patient-friendliness through a combination
of reduced size and advanced features, including integrated dose
calculators and alarm systems. Scientific studies have confirmed
that CSII is more effective compared to multiple injection ther-
apy in achieving glucose targets, resulting in an approximate
reduction of 0.5% in HbA1c, which in turn reduces insulin
dosage by ≈14%.[37,38] Wearable continuous infusion pumps
also decrease instances of hypoglycemia, leading to an overall
improvement in patient satisfaction and quality of life.

3. Closed-Loop Control Framework

The evolution of wearable technologies has greatly facilitated the
downsizing, user-friendliness, precision, and automation of both
CGM systems and insulin delivery devices (shown in Figure 1).
By utilizing the data from CGM, healthcare providers can make
informed adjustments to basal and premeal insulin doses, lead-
ing to more rational and effective diabetes therapy. Nonetheless,
effective glucose regulation, especially during the night, and
timely management of hypoglycemia pose unique challenges.[12]

To address these challenges, closed-loop AP systems have
emerged. These systems employ CGM-informed algorithms to
automate insulin administration without continuous user inter-
vention. This seamless and uninterrupted glucose regulation not
only alleviates the burden on patients but also enhances their
overall quality of life.[39,40]

However, it’s crucial to acknowledge that while continuous
AIDs can help manage diabetes, they may still cause occasional
hypoglycemia and hyperglycemia, which can be life-threatening.
Developing accurate and reliable prediction models and insulin
dosing algorithms is a significant challenge in closed-loop
systems. These algorithms must be adaptable to individual

Table 2. Comparative analysis of commercially available insulin delivery devices and features.

Device Company Type Infusion accuracy Basal increments Glucose monitoring

Medtronic 700 Medtronic Minimed Infusion pumps 0.025 U h�1 0–35 U h�1 ✗

Medtronic 712 Medtronic Minimed Infusion pumps 0.05 U h�1 0–35 U h�1 ✗

Medtronic 712e Medtronic Minimed Infusion pumps 0.05 U h�1 0–35 U h�1 ✗

Medtronic 722 Medtronic Minimed Infusion pumps 0.05 U h�1 0–35 U h�1
✓

Dana 2 s Dana Syringe 0.01 U h�1 0–16 U h�1 ✗

Dana R Dana Syringe 0.01 U h�1 0–16 U ✗

IPELE IPELE Syringe 0.05 U h�1 0.1–25 U ✗

NovaPen 5 IPELE Pen 0.05 U h�1 1–60 U ✗

InPen Medtronic Minimed Pen 0.05 U h�1 0.5–30 U h�1
✓

AdvantaJet Activa Jet injectors No info 0.5–50 U h�1
✓

Injex 30 Equidyne Jet injectors No info 5–30 U h�1
✓

Vitajet 3 Bioject Corp Jet injectors No info 2–50 U h�1
✓

Omnipod 5 Insulet Skin grip 0.05 U h�1 0.05–30 U h�1
✓

Omnipod Dash Insulet Skin grip 0.05 U h�1 0.05–30 U h�1 ✗

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, 7, 2400822 2400822 (3 of 16) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2025, 7, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400822, W

iley O
nline L

ibrary on [03/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


variations in glucose response and insulin sensitivity, while also
ensuring precise control over dosing timing and dosage.[41]

3.1. Glucose Prediction

Glucose prediction models utilize data generated from CGMs
to forecast future glucose levels, enabling timely interventions
against hyperglycemia or hypoglycemia. These accurate and
reliable predictions are crucial for personalized diabetes manage-
ment, reducing the risks of complications, and enhancing the
quality of life.[42,43] However, glucose predictions can be inher-
ently challenging due to interference from various external envi-
ronmental factors and individual characteristics. Additionally,
lifestyle variations introduce further complexity into glucose pre-
diction models. Dietary habits and the timing and intensity
of physical activity can cause significant fluctuations in glucose
levels. For example, high carbohydrate intake can lead to rapid
increases in glucose levels, while physical exercise can cause both
immediate and delayed changes in glucose dynamics. These var-
iations necessitate the development of adaptive models capable
of accommodating diverse behavioral patterns and environmen-
tal influences.

The prediction models not only forecast glucose variations for
future time frames but also function as early warning systems for
potential hyperglycemic and hypoglycemic risks (as illustrated in
Figure 2). Addressing the influence of human factors is therefore
critical for enhancing the robustness and reliability of closed-loop
systems in real-world applications.

3.1.1. Evaluation Metrics

To assess the accuracy of prediction models, various perfor-
mance evaluation methods are commonly used, including root
mean square error (RMSE), mean absolute percentage error
(MAPE), and mean square prediction error (MSPE). In the con-
text of blood glucose prediction, yi represents the model’s pre-
dicted output and Yi the actual blood glucose measurement.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

ðYi � yiÞ2
vuut (1)

MAPE ¼ 1
N

XN
k¼1

����Yi � yi
Yi

����� 100% (2)

MSPE ¼ 1
N

XN
k¼1

Yi � yi
Yi

� �
2
� 100% (3)

Clarke error grid analysis (EGA) is a method specifically for
evaluating the accuracy of BG monitoring systems.[44] As shown
in Figure 3, it compares the predicted values from CGMs with
reference glucose values to categorize and assess the clinical
accuracy of the predictions. Various studies have employed these
criteria to compare glucose prediction models. However, each
criterion possesses unique advantages and drawbacks, with
the selection often depending on the specific objectives of the
prediction task.

3.1.2. Machine Learning for Multihorizon Glucose Prediction

Traditional glucose prediction methods utilized mathematical
models and statistical assumptions based on glucose metabolism
and carbohydrate intake dynamics.[45] However, these models
often showed notable prediction biases. A more advanced
approach was developed by Sparacino et al.[46] who utilized recur-
sive time series model identification with real patient CGM
data, shifting from empirical statistical parametric models
to data regression models using first-order polynomials and
autoregressive (AR) models, thereby enhancing 30 and 45min
prediction accuracy. Estrada et al.[47] introduced normalized
least mean square algorithms (NLMS), integrating anthropologi-
cal (e.g., HbA1c, disease duration, insulin dosage) into an
Autoregressive eXogenous (ARX) model for online identification
with T1D patient data. They found that predictive performance
improves with physiologically inspired variable gain over con-
stant gain. Kamuran et al.[48] developed an ARMAX prediction
algorithm that uses autoregressive (AR) and mean shift (MA)
methods for external conditions (X) to better predict blood glucose
variations, effectively addressing nonlinearities in glucose predic-
tion and warning the risk of hypoglycemia in the next 30min
(RMSE= 18.55mg dL�1) and 60min (RMSE= 38.06mg dL�1)
in the experiment.

Machine learning offers a promising method for improving
the accuracy and reliability of diabetes management prediction.
By analyzing large datasets of glucose measurements, machine
learning algorithms can identify complex patterns and relation-
ships that are difficult to detect with traditional statistical models.
Georga et al.[49] proposed and extended the support vector regres-
sion (SVR) model to predict nocturnal and non-nocturnal
(i.e., diurnal) events during sleep by considering recent glucose
status, meals, insulin intake, and physical activity. This study
reports a high predictive accuracy of 94% for nocturnal hypogly-
cemic events, as assessed with a sensitivity analysis. Both hori-
zons were found to exhibit comparable performance, with
corresponding time lags of 5.43 and 4.57min, respectively. In
the context of diurnal events, their results indicated a sensitivity
of 92% and 96% for 30 and 60min horizons, respectively, when
physical activities were not taken into account. The SVR algo-
rithm (SVM model variant) has been one of the most popular
methods in the previous years for blood glucose prediction stud-
ies. Given the complexity and diversity of external and internal
factors affecting blood glucose levels, analyzing their relationship
to blood glucose variation is a significant challenge. In another
study, Georga et al.[50] used random forest (RF) and RReliefF
algorithms to rank the candidate feature sets. A forward selection
procedure was then used to build a glucose prediction model and
add features to the model in decreasing order of importance.

3.1.3. Deep Neural Networks for Accurate Glucose Modeling

The use of deep neural networks can effectively deal with com-
plex prediction tasks by leveraging their ability to map inputs into
high-dimensional latent spaces and identify temporal correla-
tions. In glucose forecasting, Artificial Neural Networks (ANNs)
utilize historical glucose data for future predictions. The multi-
layer perceptron (MLP), a foundational structure in ANNs,
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computes neuron combinations, enabling the learning of
nonlinear glucose input–output relationships and adaptation
to individual variability. Research demonstrates promising
glucose prediction performance with high accuracy, achieving
around 15.0mg dL�1 RMSE for 30min forecasts across various
time horizons, such as 15 to 60min.

Unlike conventional ANNs, which process inputs in isolation,
recurrent neural networks (RNNs) capture the temporal depen-
dencies inherent in continuous data by maintaining an internal
state that retains information from previous inputs. This makes
them particularly useful for glucose prediction, as they can use a
series of glucose measurements to forecast future glucose con-
centrations. RNNs are also adept at managing irregularly spaced
data, missing values, and adjusting to the evolving dynamics of
glucose responses. Predominantly, glucose prediction employs
RNN architectures like long short-term memory (LSTM) net-
works or gated recurrent units (GRU).[51–54] These structures
have the capability to retain or omit information from preceding
time intervals. For instance, Idriss et al.[52] employed multilayer
LSTM networks to enhance blood glucose prediction capabilities.
Their study compared the AR algorithm family, traditional
ANN algorithms, and machine learning techniques such as
SVR. Experimental results indicated that the LSTM algorithm

outperformed others in predicting blood glucose fluctuations.
Their model’s average RMSE was 12.38mg dL�1, in contrast
to 28.84mg dL�1 for AR and 50.69mg dL�1 for other existing
LSTMs. To further improve the prediction accuracy, Sun et al.[51]

integrated LSTM and Bi-LSTM, which deepened the network and
enhanced its bidirectional sequence learning capacity.

Recently, attention-based methods,[55,56] particularly the
Transformer[57] algorithm introduced in 2017, have been inves-
tigated for glucose prediction in diabetes management.[58] The
Transformer, utilizing a multihead self-attention mechanism,
excels in identifying contextual relationships within data, signifi-
cantly differing from RNNs by processing inputs concurrently
for enhanced computational efficiency and handling varying
sequence lengths. This feature addresses the limitation of
fixed prediction time windows. With a MAPE of 12.78, 13.4,
and 13.5 for 12-, 24-, and 36-step predictions respectively, the
Transformer’s performance in blood glucose prediction show-
cases its potential in closed-loop diabetes management.

Recently, attention-based methods[55,56,59] have been used for
glucose prediction. Zhu et al.[60] integrated RNN with attention
structure to capture the local and global information in BG
sequences, achieving an RMSE of 35.28� 5.77mg dL�1 for
60min PH on a private dataset. The Transformer model adheres
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Figure 2. A framework for the glucose prediction and warning task flow. a) The left side shows the input data as well as data preprocessing, the middle
part shows multiple machine learning or deep learning algorithms and evaluations, and the right side shows the algorithm objectives. b) Real-time
acquisition of the latest CGM data, combined with historically stored blood glucose variation information, is used to predict future trends through neural
networks. c) Four common evaluation metrics are used to assess the performance and safety of neural network models.
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to the established encoder–decoder framework, yet distinguishes
itself by incorporating multihead self-attention mechanisms
instead of the traditional RNNs. This architecture excels in
parallel processing and is adept at capturing global relationships
within sequences across diverse semantic spaces. In the realm of
glucose prediction, Lee et al.[58] implemented the Transformer
model to perform both prediction and classification tasks using
autoregression. This model was evaluated on a proprietary data-
set, achieving a MAPE of 17.88 on the OhioT1DM dataset.
Additionally, Sergazinov et al.[61] utilized the Transformer model
for glucose prediction, innovatively modifying the model’s drop-
out layer to quantitatively assess uncertainty. This modification
significantly improved the Transformer’s efficacy in blood
glucose prediction tasks.

Table 3 presents a summary of various studies and their
outcomes. Developing predictive neural networks tailored for
specific patient groups remains challenging, especially when
the clinical datasets are limited. Neural networks trained on data
from certain regions may not perform consistently on globally
diverse patient groups. Integrating neural architectures effi-
ciently into devices like CGMs is also a major challenge.

3.2. Clinical and Simulated Diabetes Datasets

Incorporating machine learning and AI into diabetes manage-
ment necessitates comprehensive datasets for model training,
validation, and testing. This section introduces 4 public datasets,
which are derived from patients in various regions and collected
through different CGM and wearable devices. These datasets can
be utilized to train blood glucose prediction models, study

closed-loop control algorithms, and research insulin injection
feedback. While some of these datasets are open source, others
must be procured directly from the respective authors or insti-
tutions (Table 4).

3.2.1. OhioT1DM

The OhioT1DM dataset[62] comprises 8 weeks of continuous glu-
cose monitoring, insulin dosing, physiological sensor data, and
self-reported life events from 12 individuals with T1D. An inte-
grated graphical software tool enables researchers to effectively
visualize this extensive dataset. Initially introduced in 2018 for
the inaugural blood glucose level prediction challenge, the data-
set then encompassed data frommerely six participants. In 2020,
data from an additional six individuals was incorporated.

3.2.2. UVA/Padova

The UVA/Padova Type 1 Diabetes Mellitus Simulator
(T1DMS)[63] serves as a sophisticated simulation tool, enabling
researchers to conceptualize and assess simulated therapeutic
interventions for T1D patients. It adeptly replicates real-life
scenarios, encompassing variations in meal intake, timing, insu-
lin dosages, and administration schedules, while proficiently
detecting and quantifying episodes of hyperglycemia and hypo-
glycemia. By offering precise control over experimental param-
eters and minimizing the calibration phase, the UVA/Padova
T1DMS enhances the efficacy of diabetes research and expedites
product development strategies. It plays a pivotal role in the
exploration and emulation of closed-loop control algorithms.
The research team has refined the simulator, transitioning from
the S2008 version to the more advanced S2013[64] iteration,
which incorporates an expanded set of parameters and facilitates
the simulation of hyperglycemic injections.

3.2.3. D1NAMO

The D1NAMO[65] dataset comprises data from 20 healthy indi-
viduals and 9 individuals with diabetes. Uniform wearable devi-
ces were employed for both groups, albeit with distinct sampling
protocols for blood glucose level monitoring. D1NAMO stands
out as the most comprehensive dataset, capturing not only
CGM and insulin data but also 34 physiological metrics, includ-
ing ECG signals, respiratory patterns, and epidermal tempera-
ture. However, the continuous monitoring duration for CGM
data is limited, leading to challenges associated with a smaller
data size during model training.

3.2.4. Shanghai T1DM/T2DM

The Shanghai T1DM/T2DM[66] datasets were sourced from
12 individuals with T1D and 100 with T2D in Shanghai,
China. These datasets were compiled under real-world condi-
tions and encompass clinical profiles, laboratory results, medica-
tion records, continuous glucose monitoring readings spanning
3 to 14 days, and daily dietary data.

Figure 4 displays the predictive performance of the
Transformer model across 4 datasets. Despite the availability

Figure 3. Clarke error grid schematic diagram. A: Clinically accurate;
appropriate actions. B: Minor deviations; benign or no treatment needed.
C: Overcorrection of normal glucose; potential unnecessary interventions.
D: Missed hypoglycemia or false hyperglycemia; potential incorrect treat-
ments. E: Opposite to true condition; severe misinterpretations and
interventions.
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of extensive datasets supporting the training and development of
intelligent blood glucose algorithms, the quality of these datasets
varies significantly. Some have short blood glucose monitoring
durations and low sampling frequencies, which profoundly
impact model training. We hope to collect more robust

continuous glucose monitoring data in the future, sourced from
patients of various ages, genders, countries, and ethnicities.
Additionally, we aim to integrate a broader range of wearable
devices to gather more physiological data, enhancing the accu-
racy of blood glucose prediction and closed-loop control.

Table 3. Existing machine learning and deep learning glucose control algorithms and performance comparison.

Methods Authors Years Best performance Data

Mathematical model (prediction) Cobelli et al.[45] 1982 No quantitative results No specific data information

AR (prediction) Sparacino et al.[46] 2007 MSPE= 318 (30 min)
MSPE= 1035 (45 min)

28 T1D individuals for 48 h

AR (classification) Estrada et al.[47] 2010 Hypoglycemia: 97.35% (F1 score 5min)
Euglycemia: 99.8%

Hyperglycemia: 98.55%

15 individuals with T1D

MLP (prediction) Perez et al.[113] 2010 RMSE= 9.74 mg dL�1 (15 min)
RMSE= 14.75 mg dL�1 (30 min)
RMSE= 25.08 mg dL�1 (45 min)

9 subjects using Medtronic Guardian
6 subjects using Abbot Navigator

MLP (prediction) Zecchin et al.[114] 2012 RMSE= 14.0 mg dL�1 (30 min) 9 individuals from Abbot Navigator
20 simulated virtual individuals generated in

UVA-Padova[64]

ARMAX (prediction) Turksoy et al.[48] 2013 RMSE= 17.47 mg dL�1 (30 min) No specific data information

MLP (prediction) Bertachi et al.[59] 2018 RMSE= 19.33 mg dL�1 (30 min)
RMSE= 31.72 mg dL�1 (60 min)

6 individuals with T1D in OhioT1DM[62]

SVR (classification) Georaga et al.[49] 2013 Nocturnal: 91% (F1 score)
Diurnal: 86%

15 individuals with T1D

SVR (prediction) Georaga et al.[50] 2015 RMSE= 21.4 mg dL�1 (30 min)
RMSE= 24.6 mg dL�1 (60 min)

15 individuals with T1D

SVR (prediction) Xie et al.[115] 2018 RMSE= 19.53 mg dL�1 (30 min) 6 individuals with T1D in OhioT1DM[62]

WaveNet (prediction) Zhu et al.[116] 2018 RMSE= 21.73 mg dL�1 (30 min) 6 individuals with T1D in OhioT1DM[62]

LSTM (prediction) Martinsson et al.[117] 2020 RMSE= 18.87 mg dL�1 (30 min)
RMSE= 31.40 mg dL�1 (60 min)

6 individuals with T1D in OhioT1DM[62]

LSTM (prediction) Arora et al.[118] 2021 RMSE= 4.03 mg dL�1 (5 min) 6 individuals with T1D in OhioT1DM[62]

LSTM (prediction) Sun et al.[51] 2018 RMSE= 11.63 mg dL�1 (15 min)
RMSE= 21.75 mg dL�1 (30 min)
RMSE= 30.22 mg dL�1 (45 min)
RMSE= 36.92 mg dL�1 (60 min)

15 individuals with T1D

Attention (predictionþclassification) Zhu et al.[60] 2022 RMSE= 37.18 mg dL�1 (60 min)
Hypoglycemia: 87.20% (F1 score-60 min)

Hyperglycemia: 88.58%

Dataset used in this study is not publicly
available

Transformer (predictionþclassification) Lee et al.[58] 2023 RMSE= 17.88 mg dL�1 (60 min)
Classification average: 72.00% (F1 score-60 min)

6 individuals with T1D in OhioT1DM[62]

Transformer (prediction) Sergazinov et al.[61] 2023 MAPE= 10.0 (30 min)
MAPE= 22.18 (45 min)

No specific data information

Table 4. A summary of the features of 4 CGM datasets.

Datasets Data source Type Sampling period Sampling frequency Patients number Patients age Food Others

OhioT1DM Real human T1DM 56 days 5min 56 20–60 2713 Insulin

UVA/Padova In silico subjects T1DM Customized 5min 30 Children/adolescent/adult 2713 Insulin

D1NAMO Real human T1DM 4 days 5min 9 20–79 2713 Insulin/ECG/breathing/
accelerometer…

Shanghai
T1DM/T2DM

Real human T1DM 3–14 days 15 min 112 20–60 2713 Insulin
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3.3. Automated Insulin Delivery Algorithms

As mentioned before, intensive insulin injection therapy stands
as the primary treatment approach for T1D. Its goal is to com-
pensate for the lack of endogenous insulin by administering
exogenous insulin, thereby regulating glucose levels and prevent-
ing complications. However, insulin therapy places a substantial
burden on patients due to the need for frequent glucose moni-
toring and dose adjustments. To alleviate this challenge, AID sys-
tems, often referred to as AP, have been developed. These
systems automatically monitor glucose levels using wearable
devices and calculate personalized insulin doses through special-
ized algorithms. Various AID systems have emerged, employing
different mathematical logic and physiological analyses, as
depicted in Figure 5.

3.3.1. Standard Formula of Insulin Dose

Early methods of insulin dose calculation were individualized
through a simple ratio formula, which is as follows.

B ¼ CHO
CR

þGc �Gt

CF
� IOB (4)

The calculation of insulin dosages for patients with
diabetes involves the use of a formula that takes into account
several patient-specific parameters. CHO

CR indicates the insulin
bolus required to cover dietary carbohydrates, which is
calculated by dividing the patient’s estimated carbohydrate
intake (CHO) by the carbohydrate-insulin specific ratio (CR),
which represents the number of grams of carbohydrate covered
per unit of insulin. The second term of the formula adjusts
the insulin dose based on the patient’s current blood glucose
concentration relative to the target value. This is calculated
as the difference between the patient’s blood glucose concen-
tration at the time of insulin injection (Gc) and the target
blood glucose concentration (Gt), divided by a correction factor
(CF), which is a patient-specific parameter for the amount by
which blood glucose is lowered per unit of insulin. The last
term of the equation adjusts the insulin dosage based on the
amount of previously injected insulin still active in the body,
known as the insulin on board (IOB), which is used to avoid
overdose.

This standard formula is widely used in clinical practice for
calculating insulin dosages in patients with diabetes.[67–69]

However, it is important to note that these parameters are
patient-specific andmay require adjustments based on individual
responses and changes in medical status. Further research is

Figure 4. Transformer’s prediction results on different datasets. The range of 70–180mg dL�1 represents the normal blood glucose level, depicted in
green, while abnormal blood glucose levels are shown in red. The “pred” denotes 30min prediction window, represented by a red dashed line. a) The
prediction results for the OhioT1DM dataset with a time step of 5 min. b) The prediction results for the UVA/Padova synthetic dataset, which exhibits
significant fluctuations. This is due to the introduction of CGM noise during data generation. The time step is 5 min. c) The prediction results for the
D1NAMO dataset. Due to the smaller size of the CGM data in D1NAMO, the prediction accuracy drops a lot. The time step is 5 min. d) The prediction
results for the Shanghai T1DM/T2DM dataset with a time step of 15min.
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needed to optimize the use of this formula in clinical practice and
improve patient outcomes.

3.3.2. Proportional Integrative Differential Algorithm System

The Proportional-Integral-Derivative (PID) algorithm is a preva-
lent method for automated insulin delivery in diabetes
patients.[70,71] The algorithm determines the insulin infusion rate
by considering the discrepancy between the patient’s target and
current glucose levels, and glucose level rate of change.
Specifically, the proportional component adjusts the rate in rela-
tion to the glucose deviation from the target. The integral com-
ponent considers the accumulated difference over time, while
the derivative component focuses on the glucose’s rate of change.
The combination of these components enables the PID algo-
rithm to swiftly and precisely modulate the insulin rate, ensuring
consistent glucose control. The computing process is shown in
Figure 5a and can be mathematically described as follows.

B ¼ KpðG� GtÞ þ Ki

Z
ðG� GtÞdtþ Kd

dG
dt

(5)

where Kp, Ki, and Kd are the gains of the linear proportional,
integral, and differential terms, respectively, and G and Gt rep-
resent blood glucose and basal glucose.

Prior research undertook a closed-loop in vivo study using can-
ines as experimental subjects. The investigation employed a
CGM named the MiniMed CGMS, paired with an external insu-
lin delivery pump, the Medtronic MiniMed 511 Paradigm.[72]

During the initial tests, the closed-loop system was activated
under hyperglycemic conditions, intentionally starting with ele-
vated blood glucose levels. This approach aimed to confirm the

effectiveness of the PID algorithm’s integral component in set-
ting a foundational insulin infusion rate to achieve better glucose
level, targeting a set point of 120mg dL�1. Later stages adjusted
the PID algorithm to match the plasma insulin profile typical of
someone with standard glucose tolerance.

Even though PID algorithm continually refines its parameters,
it is not a form of AI. The calculations are based on real-time
glucose data without forecasting future glucose trends. For exam-
ple, the drug effectiveness is assumed to follow the time-action
curve of the medication, ignoring physiological complexities, like
glucose regulation after exercise or during illness. Despite its
simplicity, the strength of the PID algorithm lies in its ability
to mimic the function of endocrine cells using basic parameter
calculations.

3.3.3. Fuzzy Logic Computing System

Fuzzy Logic (FL) is a mathematical system that uses linguistic
variables and membership functions to capture the uncertainty
and imprecision in a system (Figure 5b). Previous works have
applied FL to closed-loop glucose control tasks to calculate and
deliver the right amount of insulin.[73–75] Unlike PID, FL control-
lers rely only on glucose management parameters, which are
predetermined by diabetes clinical experts and programmed
for use in the controller. To maintain alignment with the estab-
lished practices within diabetes clinical domains, FL quantitative
components are commonly forged through collaborative endeav-
ors involving diabetes clinical experts. Glucose attributes are
usually confined to five distinct intervals: L (low, <80mg dL�1),
N (normal, 80–120mg dL�1), H (high, 120–180mg dL�1),
VH (very high, 180–250mg dL�1), and VVH (very, very
high, >mg dL�1). The overarching objective of the rule matrix

Target Glucose
(70-180mg/dL)

Real Time CGM 
Sample

Actual Glucose

PPID Controller
Meal

Patients Model
Insulin Dose

Target Glucose
(70-180mg/dL)

Real Time CGM 
Sample

Actual Glucose

Meal

Patients Model
Insulin DoseCClinical Parameters 

Table

Target Glucose
(70-180mg/dL)

Real Time CGM 
Sample

Actual Glucose

Meal

Patients Model
Insulin Dose

MMPC

Real Time CGM 
Sample

Observation

Meal

Patients ModelInsulin Dose

Actor

Critic

Policy UpdateRewards

(a) (b)

(c) (d)

Figure 5. Closed-loop control algorithm flow comparison. a–d) The workflow of the PID, FL, MPC, and RL frameworks, respectively, where the input is the
glucose data sensed by the CGMs and the output is the recommended insulin dose.
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construction revolves around the stabilization of glucose concen-
trations within the desired range of 80–120mg dL�1.

Operated under the same PID framework, the FL controller
operates in a fully automated mode. The present glucose level
is ascertained by BG sensors and promptly conveyed to the
computational unit. Subsequently, insulin dosages are meticu-
lously computed, thereby triggering the automatic commence-
ment of insulin administration via the pump. In instances
where CGM data transmission encounters an interruption, the
controller adeptly suspends insulin delivery until the attainment
of a steady and valid data stream is established. To ensure the
controller’s resilience, the input space of the three parameters
is judiciously delineated, encompassing a comprehensive spec-
trum of conceivable dosage scenarios frequently encountered
by individuals with diabetes. Concurrently, the rule set necessi-
tates delineation to encapsulate the intricate glucose dynamics
inherent in distinctive daily circumstances, such as meal con-
sumption. This adaptability prompts corresponding dose adjust-
ments. For instance, when glucose resides in the normal (N)
range, the rate is zero (Z), and acceleration is positive (P), the
designated insulin dose amounts to 0.10 units.

FL algorithms can incorporate qualitative and quantitative
information into insulin dosing decisions and have shown prom-
ising results in clinical studies. However, the FL algorithm is a
rule-based insulin delivery structure, which is difficult to adapt
to different individuals in complex physical environments and
physiological states, and its dosage calculation accuracy and
personalization ability can be seriously affected.

3.3.4. Model Predictive Control

Model predictive control (MPC) is an algorithm used to optimize
the performance of a system by predicting its future behavior and
taking proactive action to achieve a desired outcome. The MPC
operates as a dynamic model, generating forthcoming insulin
dosages contingent on a computation involving the prevailing
glucose concentration.[70,76] This projection hinges upon the cur-
rent glucose reading and the insulin content extant within the
physiological system (on-board insulin). If the calculated glucose
value is within the desired range, a trace amount of insulin is
delivered. Contrarily, if the calculated glucose concentration devi-
ates from the desired threshold, the dosage is escalated for ele-
vated glucose projections and attenuated for lower projections.

The process of MPC involves constantly adjusting the insulin
infusion rate sequence, estimating glucose levels, and evaluating
the objective function. The optimization algorithm autono-
mously explores the optimal sequence of insulin infusion rates
that leads to the minimization of the objective function. The ini-
tial insulin infusion rate from this optimized sequence (at time t)
is then transmitted to the insulin pump, and the comprehensive
optimization procedure is reiterated when the subsequent CGM
reading is conveyed to the AID system (at time tþ 1).

3.3.5. Reinforcement Learning Control

However, conventional control systems such as PIDs, FL sys-
tems, and MPC are based on simplistic chance or linear compu-
tation for AID control, which may inadequately address the

complexities associated with the human body response.[77,78]

Reinforcement learning (RL) excels in scenarios involving
sequential decision making, where actions depend on observed
states and have delayed consequences. RL eliminates the need for
annotated training data, as the RL agent autonomously learns the
optimal policy using deep neural networks. Its adaptive nature is
well suited for personalized analyses, effectively adapting to the
dynamic evolution of user preferences and behaviors.[79] In glu-
cose control, RL algorithms have demonstrated the ability to
learn complex and personalized control strategies for individual
patients and often outperform PID and MPC algorithms.[80,81]

The AID task in the RL framework can be modeled as a
Markov Decision Process (MDP), which is described as a
5-tuple ðS,A, r, P, γÞ. S denotes the set of states (e.g., glucose
at each time point), A denotes the set of actions (e.g., output
insulin dose), P denotes the state transfer probability
Pðstþ1 ¼ s’kst ¼ s, at ¼ aÞ, r∶S �A� S ! ℝ is the reward func-
tion, and γ ∈ ½0, 1� is the discount factor. The observation of the
state is mainly derived from real-time glucose data gt, historical
glucose data ½gt�1, gt�2 : : : gt�w�, basal insulin dose it, bolus doses
bt, and ingested carbohydrates ct.

[82] The composition of observ-
able states in an AID system is generally

st ¼ ½gt, gt�1, gt�2 : : : gt�w, It,Ct� (6)

This state represents data for the current time point and the
historical window period, utilizing observations from the past
w þ 1 time points, where gt is the glucose value at the current
time step and gt�w is the glucose value prior to the w time stamp.
Also included are estimates of basal and bolus insulin (insulin on
board) combined insulin activity It, and estimates of carbohy-
drate activity Ct.

[83]

Several RL methodologies are being explored, including
temporal difference learning, a mechanism based on iterative
bootstrapping, and updates that rely on the present valuation of
the value function. Additionally, the exploration encompasses
actor–critic (AC) learning, a composite construct comprising
two distinct components: an actor responsible for orchestrating
action selection strategies, and a critic tasked with appraising
the value function and evaluating the actor’s chosen actions.
Consequently, these algorithms are distinguished by the incor-
poration of a dedicated memory framework designed to explicitly
encapsulate the strategy, decoupled from the underlying value
function.[84] The training goal of an RL agent is to find the best
policy π∶S �A ! ½0, 1� that maximizes the cumulative dis-
counted return

P∞
t¼0 γ

trt. The reward function is generally set
according to the following principles: the reward is maximized
when the blood glucose is approximately in the center of the tar-
get range (70–180mg dL�1), too high or too low the reward is
negative, and in general special attention should be paid to
the reward value during hypoglycemic states, which are more
fatal.[80] Other reward functions for glucose control are also men-
tioned in the studies of Tejedor et al.[85] and Basu et al.[86]

4. Challenges and Future Perspectives

While substantial efforts have been directed toward the advance-
ment of closed-loop diabetes control systems, challenges such as
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misalignment between pancreas dynamics, algorithm reliability,
and network deployment on edge devices need to be addressed to
ensure the effective and widespread implementation of such
systems.

4.1. Misalignment between Artificial and Natural Pancreas

Traditional closed-loop control systems employ real-time
feedback and insulin delivery through CGM devices. While
commonly termed as APs, these systems rely on rudimentary
sensory input mechanism, which inadequately account for the
complexities of the human body’s BG control system. Their oper-
ation is solely dependent on glucose monitoring and insulin
delivery, contrasting with the sophisticated pathophysiology of
a natural pancreas, which involves the interplay of multiple
hormones.

In order to address the disparity between the AP and the com-
plexities of the human body, a promising approach is the imple-
mentation of a multisensing system. This approach monitors
multiple real-time physiological indicators, such as galvanic skin
response, heart rate, and blood pressure, obtained from wearable
devices, to ensure rapid insulin adjustments. By integrating data
from CGM and wearable-derived predictions, the multisensing
approach offers a significant advancement for future closed-
loop control systems. The implementation of supplementary
physiological indicators serves to enhance the accuracy of BG
predictions during daily activities,[87,88] thereby facilitating more
accurate and personalized dosage administration and glucose
control. Additionally, a dual-hormone closed-loop system inte-
grates insulin and glucagon administration, effectively address-
ing both hyperglycemia and hypoglycemia.[89,90] This system
outperforms single insulin delivery in preventing hypoglycemic
episodes (Figure 6a) and closely mimics the multifaceted func-
tions of a natural pancreas. Within the insulin-glucagon realm,
two primary approaches have emerged: modest glucagon dosing
to prevent hypoglycemia without increasing insulin administra-
tion, and intermittent glucagon infusion to intensify insulin
delivery and achieve a more pronounced reduction in BG lev-
els.[90] Studies have confirmed their effectiveness in reducing
hypoglycemia, improving BG control, and maintaining longer
periods of BG normalization compared to standard insulin pump
therapy.[91,92]

Novel devices, such as organic electrochemical transistors
(OECT)[93] and microneedles,[9,94] can provide higher accuracy
in glucose monitoring, further facilitating the improvement of
these algorithms. Addressing challenges related to low hormone
concentrations and device longevity, while ensuring clinical accu-
racy and speed, remains crucial for the future development of
sensors and systems. Advances in CGM technology have pro-
gressively bridged the perceptual gap between artificial and nat-
ural pancreases, significantly impacting the personalization of
AI technologies. Modern CGM systems offer more accurate
real-time glucose readings, with higher sensitivity and faster
response times, inspiring researchers to develop neural network
models capable of processing high-temporal-density glucose
data. This enables better prediction of future glucose fluctuations
and precise insulin injection. Additionally, the integration of
multiple sensor systems can provide more comprehensive

physiological information for intelligent closed-loop systems.
This necessitates the development of newmultimodal neural net-
work technologies that can collectively learn from diverse sensor
data, thereby enhancing the closed-loop system’s ability to more
effectively prevent hypoglycemic and hyperglycemic episodes.

4.2. New Generation of Painless Noninvasive Glucose
Monitoring

The evolution of noninvasive techniques has gained attention in
CGMs, driven by the need for painless and user-friendly solu-
tions for diabetes management. Traditional methods, involving
fingerstick blood sampling, can be painful and inconvenient,
leading to poor adherence among users. In contrast, a new
generation of noninvasive blood glucose monitoring devices
seeks to deliver accurate and continuous glucose measurements
without the discomfort associated with the pain of invasive pro-
cedures. Novel advancements in sensor technology have paved
various ways for innovative noninvasive monitoring solutions,
such as fluid-sampling electrochemical, optical, and electromag-
netic methods, to detect glucose levels through the skin. Despite
the considerable progress made in noninvasive CGM systems, a
fundamental challenge persists in the development of robust
algorithms for the accurate interpretation and calibration of
sensor data, which significantly influences their efficacy. For
instance, the fluid-sampling method suffers a physiological time
lag between blood glucose levels and interstitial fluid measure-
ments,[95,96] while an optical-based sensor may struggle with dis-
turbance factors like skin tone, temperature fluctuations, and
hydration level, which can interfere with light absorption and
scattering measurements.[27,97]

To address concerns about the accuracy of noninvasive CGMs,
a promising solution is the implementation of a multimodal
system that can monitor various disturbance factors, aiming
to enhance sensitivity to changes in blood glucose levels.[28]

Additionally, integrating machine learning algorithms into non-
invasive monitoring devices offers exciting potential for future
advancements. These technologies can analyze large amounts
of data from multiple sensors, enabling predictive modeling
of glucose fluctuations. By anticipating changes in blood glucose
levels, AI-driven systems can facilitate timely insulin delivery,
more closely mimicking the natural regulatory functions of
the pancreas.”

4.3. Reliability of Data Collection and Model Training

Deep learning requires a large number of data to train neural
networks; hence, many prediction models opt for training and
validation on private or open-source datasets.[29,58] However,
due to variations in BG dynamics and physiological characteris-
tics among different patients,[98] validation based on existing data
may not reflect equivalent performance in real clinical scenarios.
Consequently, the reliability of prediction models in actual clini-
cal settings is challenged. Recently, transfer learning[99,100] has
been increasingly recognized for its potential in BG prediction
tasks. This approach enables the further generalization of pre-
trained models on smaller datasets, holding promise for person-
alized BG prediction. Future efforts to validate models trained on
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existing data in real-world scenarios will require more stable
and comprehensive evaluations and techniques to ensure model
robustness.

In addition to the challenge of personalized algorithms,
another factor affecting the reliability is the issue of imbalanced
data distribution in existing datasets.[100] This imbalance

originates mainly from two sources: sampling imbalance and
BG distribution imbalance. Sampling imbalance often results
from the insufficiently diverse collection of clinical datasets,
where many datasets include only a limited number of patients
who often live in the same area and share similar ethnic and
lifestyle. As a result, the capabilities of prediction models and
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Figure 6. Our vision for the future of closed-loop artificial pancreas systems. a) Conventional system (left) only regulates insulin based on glucose level,
while multisensing system (right) combines multianalyte microneedle array with dual-hormone delivery to regulate BG more flexibly, replicating the
function of a natural pancreas. b) We envision the development of a closed-loop AP system. Miniaturized wearable devices continuously capture physio-
logical signals, indicative of the patient’s daily activities. This multimodal data is processed by edge AI models, which employ data-driven deep learning
algorithms to ascertain the optimal insulin dosage.
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insulin dosage calculation models tend to be overly focused on
populations with similar characteristics. The second type of
imbalance is the distribution bias in human blood glucose data,
where most datasets concentrate within the normal glucose range,
and hyperglycemia and hypoglycemia distributions are scarce.
This limits the model’s ability to learn about abnormal glucose
variations, impacting the performance of alert models.[101,102]

To address these data distribution issues, collaborative efforts
from clinical researchers are required to gather more compre-
hensive diabetes data. Additionally, more preprocessing and
algorithmic approaches need to be employed to address imbal-
anced data, thereby enhancing the learning capabilities of the
models.[101,103]

4.4. Edge Computing for Closed-Loop Control

Existing prediction, alert, and closed-loop control networks have
predominantly been validated on graphics processing units.
However, in real-world closed-loop glucose control scenarios,
it is imperative for deep learning models to be deployed on edge
devices, such as smartwatches, smartphones, CGMs sensors,
and insulin delivery devices.[104] Recent research has under-
scored the critical role of edge computing in blood glucose
computation, as it provides more reliable real-time services on
wearable devices.[104,105] This offline computation approach
yields extremely low output latency and remains unaffected by
internet connectivity issues and improves the medical decision
response speed. Deploying neural networks on edge chips with
limited computational resources necessitates further model
compression. Advanced methods, including quantization[106,107]

and pruning,[108–110] offer significant promise in enhancing
the application of deep learning for edge-based blood glucose
computation. Additionally, the development of more lightweight
and efficient algorithms is increasingly being recognized as
a key expectation for intelligent closed-loop diabetes control
systems.

Another important advantage of edge-intelligent wearable sys-
tem is the localization of patient’s personal data, enabling data
processing and analysis to occur on local devices and reducing
frequent communication with remote service centers.[111] This
fully edge-based computing approach confines user data to local
wearable and mobile devices, thereby reducing the risk of data
interception or leakage during transmission between edge sen-
sors and remote server centers, and enhancing the protection of
user data privacy.[112] To further ensure data privacy and security,
wearable devices typically incorporate data encryption technolo-
gies and local access control strategies to prevent unauthorized
access and potential cyberattacks. This multilayered security
design provides users with a more reliable and secure smart
wearable experience, meeting the high standards of modern
health management and personalized medicine.

Looking ahead, our research will focus on the synergy between
AI and emerging wearable devices. The overarching goal in this
field is to develop an intelligent wearable cyborg AP that can
detect various physiological parameters, facilitate dual-hormone
administration, and integrate AI models (Figure 6b) to compen-
sate for the impaired pancreatic function in individuals with
diabetes. This endeavor aims to significantly improve the quality

of life for people with diabetes by offering a more sophisticated
and responsive glucose management solution.

5. Conclusion

AI-enhanced wearable diabetes management systems hold sig-
nificant promise in improving glucose control and alleviating
the challenges associated with insulin therapy in diabetes man-
agement. This review has summarized the core components and
recent innovations in closed-loop diabetes control systems,
including glucose prediction models, automated insulin dosing
algorithms, and wearable technology. Significant progress has
been made in creating data-driven blood glucose prediction mod-
els using machine learning and deep learning techniques. These
advanced algorithms, like deep neural networks, capture the
temporal nuances in CGM data, offering tailored predictions.
In insulin dosing, both traditional systems and RL-based
model have proven effective in automating dosage adjustments.
Integrating physiological data from wearables can further
enhance the performance and safety of closed-loop systems.
However, challenges remain. Improving sensor accuracy and
miniaturization is crucial for truly wearable systems. Dual hor-
mone systems, which include glucagon, require stable wearable
technologies for practical use. The integration of noninvasive
glucose monitoring technologies, such as those optical sensors
embedded in smartwatches, emerges as a promising avenue
for development offering a non-intrusive and continuous moni-
toring solution, potentially reducing the reliance on traditional
invasive methods. The convenience and user-friendliness of such
wearable devices could significantly improve adherence to moni-
toring regimens among individuals with diabetes, fostering pro-
active glucose management and enhancing overall quality of life.
In conclusion, AI-driven closed-loop wearable systems have the
huge potential in diabetes care. As this interdisciplinary field pro-
gresses, we are nearing the realization of intelligent systems that
emulate the pancreas, promising improved outcomes and quality
of life for diabetes patients worldwide.
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