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An AI-embedded, Wearable Dual Closed-Loop Insulin
Delivery System for Precision Diabetes Management

Xuecheng He, Wei Huang, Wensheng Lin, Binbin Cui, Xinyu Tian, Jing Bai, Dingyao Liu,
Ivo Pang, Hao Huang, Shixian Lin, Jixiang Zhu,* Jinqiang Wang,* and Shiming Zhang*

Effective blood glucose management is an increasing demand worldwide.
Traditional solutions separate glucose detection and insulin delivery, which is
less efficient compared to emerging closed-loop wearable systems controlled
by continuous glucose monitors (CGMs). However, CGM-controlled systems
raise new safety risks, as false CGMs readings can cause insulin overdose,
which results in hypoglycemia and fatal consequences. This work proposes
a concept of a dual closed-loop insulin delivery system (DuoLoop) to mitigate
the risk issue of CGM-controlled systems. The first closed-loop is automated
insulin delivery controlled by CGM. The second closed-loop is the controlled
release of glucose-responsive insulin (GRI), whose release rate depends on
actual glucose levels. A customized algorithm is trained and embedded into the
wearable CGMs for edge computing. The DuoLoop system shows improved
safety in preliminary in vivo test (longer normoglycemia durations, 98.82%
vs 92.10%), encouraging its deployment toward precision diabetes care.

1. Introduction

Diabetes, a chronic global disease characterized by impaired in-
sulin secretion and persistent hyperglycemia, may affect 643
million people worldwide by 2030.[1–3] Traditionally, patients are
treated with separate glucose detection and insulin delivery,
which often leads to severe complications such as seizures, un-
consciousness, or even death due to hypoglycemia.[4] Currently,
the emerging wearable biosensors,[5–12] such as the continuous
glucose monitors (CGMs) controlled closed-loop insulin delivery
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systems, have proven to be more ef-
fective in glycemic control over tradi-
tional methods.[13–18] The CGMs continu-
ously track glucose levels, while the al-
gorithm adjusts insulin release or sus-
pension in response to real-time glu-
cose data. However, the current CGM-
controlled single closed-loop (SinLoop) sys-
tems raise new safety risks. For exam-
ple, false glucose readings can cause in-
sulin overdose, which, in turn, results in
hypoglycemia and fatal consequences.[19,20]

To address the insulin overdose issue,
glucose-responsive insulins (GRIs) have
been developed.[21–24] These GRIs emulate
the function of 𝛽 cells, with insulin release
rates dynamically controlled by in vivo
glucose levels in a chemically closed-loop
manner. Three primary glucose-responsive
mechanisms, including glucose-binding

protein,[25] glucose oxidase,[26] or phenylboronic acid,[27] have
been widely investigated for constructing GRIs. Although GRIs
can spontaneously modulate insulin release to some extent,
current administration methods, such as passive disposable
patches,[28] oral formulations,[29] or manual injections,[21,30] lack
integrated electronic systems for precise regulation. As a result,
these approaches are still associated with risks of hyperglycemia
or hypoglycemia.
As mentioned above, a CGM-controlled system (electrical

closed-loop system) is effective in the automatic control of insulin
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release but carries a risk of overdose due to its intrinsic draw-
backs. On the other hand, while GRIs (chemical closed-loop sys-
tems) can help mitigate the risk of overdose to some extent, they
still lack the capability for continuous and precise insulin deliv-
ery. We thus hypothesize that integrating CGM-controlled sys-
tems with GRIs could establish an effective hybrid closed-loop
system, combining the strengths of both electrical and chem-
ical closed-loop approaches. However, this raises challenges in
system engineering, as i) a customized algorithm and ii) a wear-
able hardware system are required to bring this concept to
reality.[31]

In this Article, we present a new “dual closed-loop” wear-
able insulin delivery system (DuoLoop), which showed enhanced
safety over traditional SinLoop systems. Our DuoLoop system
includes the following three key components (Figure 1a): (i)
a CGM for the real-time glucose analysis, (ii) a GRI, whose
insulin delivery rate is governed by actual glucose levels, and
(iii) a customized algorithm that is capable of predicting the glu-
cose trend in the next 30 min for secured edge-decision mak-
ing. Given the limitations of traditional mathematical models
in predicting glucose fluctuations accurately, we implemented
a Transformer-deep neural network (Figure 1b) to improve pre-
diction accuracy. This system supports a proportional-integral-
differential (PID)-controlled GRI release mechanism (Figure 1c)
with precise 30-minute glucose predictions. The trained Trans-
former model showed its reliability (R2 = 98.03% and 97.83%,
for the in-domain and out-of-domain test sets, respectively) for
precise glucose trend prediction. In vivo validations demonstrate
that the DuoLoop achieves longer normoglycemia durations
(98.82% vs 92.10%), reduced hyperglycemia (0.65% vs 3.89%),
minimized hypoglycemia (0.52% vs 4.01%), and lower glucose
fluctuations (standard deviation, SD: 2.44 vs 1.42, coefficient of
variation, CV: 25.14 vs 41.22), over conventional SinLoop system
(Figure 1d).

2. Results and Discussion

2.1. Real-Time Glucose Monitoring with CGM

To implement the DuoLoop concept, we employed a commer-
cial CGM for real-time glucose monitoring. We also used our
recently developed organic electrochemical transistor (OECT)
based CGM as an alternative device for cross-validation (Figure
S1, Supporting Information). The OECT-CGM shows a mono-
tonic decrease in Ids (I drain-source) across an extended glucose
concentration range (0.4 to 30 mm, Figure S2, Supporting In-
formation). This wide detection range allows the monitor of
both hyperglycemic and hypoglycemic levels, which is beyond
the sensing window of commercial CGMs (in the range of
2–25 mm). The glucose readout from the above CGMs was
benchmarked with the blood glucose (BG) devices. The sam-
ples from healthy and streptozotocin (STZ)-treated type 1 dia-
betic rats (Figure S3, Supporting Information) across various
glycemic levels yielded a high coefficient of determination (R2 =
0.94, n = 31) between BG meter and the CGM readout (Figure
S4, Supporting Information). This result aligns well with pre-
vious studies,[32,33] and suggests the reliability of the employed
CGMs.

2.2. GRI Synthesis and Validation

The GRI was formulated as previously reported.[21] In short,
biodegradable poly-L-lysine (PLL) was modified with polyethy-
lene glycol (PEG) and 4-carboxy-3-fluorophenylboronic acid
(FPBA) and obtained a glucose-responsive polymer designated
as PEG-PLL-FPBA (Figure S5, Supporting Information). PEG-
PLL-FPBA attracts negatively charged recombinant human in-
sulin (RHI) to form nanosized insulin complex (Figure 2a).
Under a high glucose level, FPBA binds to the glucose
molecules rapidly, thus leading to a reduction in positive
charge density and subsequent insulin release (Figure S6, Sup-
porting Information). The PEG-PLL-FPBA polymer exhibited
a white appearance, while the GRI solution remained clear
and free of sediment (Figure 2b). Transmission electron mi-
croscopy (TEM, Figure 2c) and dynamic light scattering (DLS,
Figure 2d) analyses demonstrated that the polymer-insulin com-
plex showing uniformly distributed nanomicelles with a di-
ameter range around 100 nm. This nanoscale dimension en-
sures the injectability of GRI and prevents potential block-
age of the needle/pump systems during subsequent delivery
processes.
In vivo glucose-triggered insulin release was further con-

ducted to examine glucose-responsive behavior. Diabetic rats re-
ceived GRI via transcutaneous injection. Figure 2e shows three
independent parallel experiments illustrating the dynamic re-
lationship between interstitial fluid glucose and serum insulin
(from GRI). Two hours after baseline, glucose (1.35 g kg−1)
was administered to all diabetic rats (defined as 0 min in
Figure 2e), causing a rapid rise in ISF glucose within about
15 min. This sharp increase effectively triggered a glucose-
dependent release of insulin, resulting in a serum insulin spike
(21.0 ± 1.0 mU/L) at 30–45 min. The elevated GRI subsequently
facilitated glucose clearance, reducing ISF glucose levels to-
ward normoglycemia. As ISF glucose declined, negative feed-
back within the GRI system attenuated insulin release, lead-
ing to a gradual decrease in serum insulin concentrations be-
tween 30 and 60 min. The reproducibility of these glucose–
insulin dynamics across three independent replicates highlights
the robustness and reliability of the GRI-mediated regulatory
mechanism. To further understand the in vivo insulin release
dynamics, we performed glucose tolerance tests 2 hours post-
GRI or RHI administration (Figure S7, Supporting Informa-
tion). RHI-treated rats showed a rapid BG increase and tempo-
rary decrease (less than 1 h), followed by obvious hyperglycemia.
In contrast, GRI-treated rats showed a delayed ISF glucose in-
crease after glucose injection, followed by a rapid return to nor-
moglycemia sustained for 5–6 hours. The above results con-
firm the effectiveness of GRI in dynamically regulating BG
levels.
To determine the optimal dosing of GRI to be injected into

diabetic rats, as shown in Figure S8 (Supporting Informa-
tion), we further conducted dose-response experiments with
four RHI and GRI groups. Each GRI group maintained nor-
moglycemia for a longer duration than the RHI group (with
equivalent insulin doses). However, doses of 5 and 15 U/kg were
insufficient to sustain normoglycemia, while 30 U/kg led to-
hypoglycemia. An optimal dose of 25 U/kg provided about 8
hours of normoglycemia without hypoglycemia and was thus
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Figure 1. The overall concept of the proposed dual closed-loop insulin delivery system (DuoLoop). a) Illustration of the key components of DuoLoop,
including the CGM, algorithm, and insulin pump. b) Cross-sectional illustration depicting the interrelationship among the components in DuoLoop.
Schematics of the workflow and mechanism of c) quantized edge-AI implementation of the dual closed-loop system using a PID learning framework.
d) Comparative schematic of glucose dynamics between the commercial SinLoop and the DuoLoop. Compared to the traditional single-loop electrical
closed-loop system, DuoLoop demonstrates reduced glucose fluctuations and a lower incidence of hyperglycemia and hypoglycemia. Kp : Proportional
gain, Ki: Integral gain, Kd: Derivative gain.
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Figure 2. Synthesis and validation of GRI. a) Schematic representation of the glucose-responsive mechanism of the GRI. b) The optical image of the
polymer (solid) and polymer-insulin complex (GRI, solution). c) The TEM images of polymer-insulin complex nanomicelles. d) The size distribution of
the GRI nanomicelles. e) BG-triggered insulin release behavior following intraperitoneal glucose injection in diabetic rats. ISF glucose levels in diabetic
rats after a single injection (25 U/kg) of f) RHI and g) GRI, along with h) the corresponding normoglycemia duration. Definitions of the ISF glucose
concentrations are: hypoglycemia (<2.8 mm), normoglycemia (2.8–11.1 mm), and hyperglycemia (>11.1 mm) throughout this work.

selected as the maximum single-injection dose for subsequent
experiments unless specified otherwise. We further evaluated
GRI’s prolonged effect in five diabetic rats using 25 U/kg.
The similarity is that ISF glucose dropped to normoglycemia
within 0.5–1.5 h after injection of either RHI or GRI (25
U/kg). The major difference is that in RHI-treated rats, ISF

glucose returned to hyperglycemia within 3 hours due to lim-
ited retention (Figure 2f). In contrast, GRI achieved extended
normoglycemia lasting 6–10 hours (Figure 2g,h). To calculate
the duration of normoglycemia, we measured the time inter-
val during which glucose levels remained between 2.8 and
11.1 mm.
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Figure 3. Algorithm development and validation for DuoLoop system. a) The structural scheme of the glucose prediction Transformer model. Experi-
mental validation of the algorithm by comparing the predicted glycemia dynamics (using glucose prediction Transformer) with the glycemia dynamics
in diabetic rats on the b,c) in-domain test set and e,f) out-of-domain test set. Correlation analysis of the predicted versus actual ISF glucose level on
d) the in-domain test set g) out-of-domain test set.

2.3. Predictive Algorithm Development and Implementation

An algorithm capable of predicting glucose trends is critical
to further optimize the above GRI dosing and improve regu-
lation efficiency.[34,35] To achieve this, we developed an end-to-
end Transformer model with an Encoder-Decoder structure. The
Encoder includes two self-attention layers, while the Decoder in-
corporates a masked self-attention layer and an additional self-
attention layer, with an embedded hidden dimension of 128. As
shown in Figure 3a, we retain the Encoder-Decoder structure of
the Transformer and first embed the CGM-recorded glucose sig-
nals, denoted as:

L = L1 concat L2 concat B3 (1)

where L ∈ ℝ(m × d) represents the historical CGM and injected
insulin signals. L1 ∈ ℝn × d corresponds to long-range histori-
cal CGM data, L2 ∈ ℝ(m − n) × d corresponds to short-range his-
torical CGM data and B3 ∈ ℝ6 × d denotes the blank position
for 30 minutes prediction. The input data is processed using
the standard absolute positional encoding in the Transformer.
Additionally, to capture minute-level patterns in glucose sig-
nals, we incorporate temporal encoding derived from CGM
timestamps.
The input to the Encoder consists of the first n data points

L1 from the historical encoded glucose sequence L1. Following
the design in previous work,[36] the Encoder module learns long-
range information from the historical CGM signals, providing
long-term temporal dependencies for the prediction interval. The
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Decoder input is divided into two parts: the first part is the
short-range encoded CGM signals L2 corresponding to the last
m–n data points of the historical glucose sequence L, and the
second part consists of t empty encoding units, which serve as
the prediction targets. Input sequences consist of 100 minutes of
historical CGM data and insulin injection records. The Encoder
processes 19 historical data sets and the current CGM blood glu-
cose reading (L1, 100 minutes), while the Decoder uses the near-
est 10 points of data (L2, 50 minutes) as input. The final 6 data
points in the Decoder sequence are masked (B3, 30 minutes).
The model outputs predicted glycemia dynamics for the next 30
minutes.
We validated the prediction accuracy of the proposed AI al-

gorithm in a simulation and actual environment, where virtual
diabetic patients and their simulated CGM data were generated
over a 30-day period using the UVA/Padova simulator.[37] Glu-
cose variations in these virtual patients were regulated using the
conventional BASAL-BOLUS insulin injection method.[38] The
data was then divided into a training set (60%), validation set
(20%), and test set (20%). Training on virtual patients results in
a rapid reduction in loss, indicating that the model’s prediction
error decreases as training progresses (Figure S9, Supporting
Information),[39] and the Transformermodel’s predictions closely
match actual BG values for a randomly selected virtual patients,
with a low rootmean square error (RMSE) of 0.5mm (Figure S10,
Supporting Information), These results highlight the model’s
robust adaptability and strong generalizability for glucose
prediction.
Following the simulator, we further assessed the algorithm in

real diabetic rats through injection of GRI. Data from ten mice
were collected over 10 days in an experimental setting, with blood
glucose data obtained every five minutes and optimal GRI values
recorded based onmanual expertise. The dataset was divided into
training, validation, and testing sets in a 6:2:2 ratio. Training on
experimental diabetic rats also shows rapid loss reduction (Figure
S11, Supporting Information). The diabetic rats were categorized
into in-domain (from the same rats used for training) and out-of-
domain test sets (from different rats) groups to validate the pre-
dictive accuracy. The predicted glucose levels closely aligned with
the actual measurements in both the in-domain (Figure 3b,c) and
out-domain (Figure 3e,f) groups, with an RMSE of 1.03 mm. To
further evaluate the reliability and safety of the glucose predic-
tion system, we conducted a Clarke Error Grid (CEG) analysis,
a widely used method for assessing glucose monitoring accuracy
(Note S2, Supporting Information).[40] The results clearly demon-
strate that the majority of data points for both in-domain and
out-of-domain test sets fall within regions A (clinically accurate
zone) and B (benign errors, clinically acceptable zone), indicat-
ing strong clinical reliability. Moreover, a linear correlation anal-
ysis between AI-predicted andmeasured glucose levels revealed a
high degree of association, with an R2 of 98.03% and 97.83% and
a confidence level (buffer = 1) of 87.57% and 81.94% for the in-
domain and out-of-domain test sets, respectively. Bland–Altman
analysis was performed to compare the predicted and measured
glucose levels (Figure S12a, Supporting Information). The 95%
limits of agreement included >94% of differences between the
results from both in-domain and out-of-domain. These findings
collectively confirm the robustness and clinical applicability of
the proposed algorithm, demonstrating its potential for reliable

and accurate glucose monitoring in both controlled and variable
conditions.

2.4. Closed-Loop Insulin Injection Algorithm Implementation and
Validation

Following the Transformer model, a PID closed-loop control al-
gorithm was constructed to integrate with the predictive model
to optimize automatic GRI delivery. The PID algorithm uses pro-
portional, integral, and derivative terms to model physiological
insulin release,[41] with the following formula:

It = Kp

(
Gt −GB

)
+ Ki ∫

(
Gt −GB

)
dt + Kd

dG
dt

(2)

where GB represents the target glucose level. The proportional
term Kp(Gt-GB) measures the linear difference between the cur-
rent and target blood glucose, while the integral term Ki∫(Gt-
GB)dt corrects cumulative errors in real-time, dynamically ad-
justing GRI predictions. The derivative term Kd

dG
dt
captures glu-

cose trends, allowing the PID system to estimate dG/dt = (Gt
− Gt − 1)/5 min. This method relies entirely on past and cur-
rent measurements, which may not fully capture future glucose
trends. Since it only utilizes historical data, it cannot accurately
reflect the true rate of change (derivative) at the current time
point, as any unexpected or rapid fluctuations in glucose levels
may not be adequately represented by past observations alone.
In our proposed approach, we leverage the Transformer model’s
ability to predict future glucose levels with high precision. Specif-
ically, we enhance the derivative term calculation by predicting
the glucose value at the next time step, Gt + 1, and using it to
compute dG

dt
= (Gt+1 −Gt−1)∕(2 × 5) min. This adjustment allows

the PID system to account for future glucose trends, providing a
more precise and forward-looking assessment of glucose dynam-
ics. The Transformer model was also compressed to one-fourth
its parameter size and deployed on cell phones,[42] enabling real-
time online processing (Table S1, Supporting Information). Sim-
ilarly, a simulated closed-loop insulin injection was conducted
on ten virtual patients, yielding promising treatment outcomes
(mean glucose level: 6.0 mm, median glucose level: 6.1 mm, nor-
moglycemia percentage: 98.2%; Figure S13, Supporting Informa-
tion). We also summarized the average Time-in-Range (TIR) per-
centages for virtual patients with and without the Transformer-
based predictions (Table S2, Supporting Information). The re-
sults indicate that the inclusion of the Transformer significantly
improves TIR, with an average of 98.2% compared to 86.9%with-
out the Transformer. This improvement highlights the Trans-
former model’s ability to predict future data effectively, allowing
the PID controller to make more informed decisions and achieve
better control over blood glucose levels.
To implement a fully autonomous, algorithm-controlled in-

sulin delivery system, we constructed a miniature pump based
on a pristine commercial product (Figure 4a–c; Figure S14,
Supporting Information) and integrated several key enhance-
ments. First, we incorporated Bluetooth connectivity for wire-
less data reception (CGM prediction) and signal transmission
(pump control). Second, we attached a catheter with a reservoir
and syringe needle, enabling precise insulin storage and delivery.
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Figure 4. Algorithm implementation and validation of the DuoLoop system. a) The overall outline and layout of DuoLoop. b) Optical image of the semi-
customized insulin pump. Inset: user interface of the insulin pump control system. c) The functional block diagram highlighting the major electronic
components. Experimental validation of the algorithm by comparison of glucose level under algorithm-recommended GRI delivery dose (d) reduced
dose; (e) increased dose) and timing f) versus that under non-algorithmic dosing and timing conditions.

Third, the PID algorithm was deployed on the pump, facilitating
real-time, edge-based GRI closed-loop control. Upon receiving
CGM prediction data via Bluetooth, the system anticipates future
glucose trends and dynamically regulates insulin delivery. The
integrated design allows for wireless operation via a user inter-
face to adjust the power and insulin delivery rate (Figure S15a,
Supporting Information), which canmaintain optimized glucose
levels of diabetic objects without disrupting their daily activities.
The actual solution volumes showed good agreement with the
set values (Figure S15b, Supporting Information), meeting the
requirements for accurate insulin delivery.

To assess the accuracy and effectiveness of the PID closed-
loop control algorithm, we intentionally altered both the recom-
mended insulin dose and injection timing and compared the
glucose level under algorithm-recommended GRI delivery dose
and timing versus that under non-algorithmic dosing and tim-
ing conditions using the above pump. First, an initial injection
was administered to lower glycemia to a comparable normo-
glycemic level, allowing a clearer comparison of glycemic dy-
namics following subsequent injections. The algorithm-guided
insulin delivery kept glucose levels within the normoglycemic
range (Figure 4d–f), while intentionally reduced and increased
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insulin doses caused hyperglycemia (Figure 4d) and hypo-
glycemia (Figure 4e), respectively. Briefly, in Figure 4d, the ISF
glucose concentration rose at around the 11th hour, at which
point the algorithm began calculating the recommended insulin
dose. We deliberately decreased the GRI dose to 80% of the algo-
rithm’s recommendation by reducing the insulin pump power,
resulting in evident hyperglycemia. In Figure 4e, the glucose
concentration increased and reached ≈10 mm at around the
16th hour. When the algorithm started to calculate the recom-
mended dose, we deliberately increased the GRI dose to 120%
of the algorithm’s recommendation, leading to observable hypo-
glycemia (rather than hyperglycemia) at around the 17th hour.
The timing of insulin delivery is also crucial. As shown in
Figure 4f, insulin delivery within the recommended time slots
achieved better control of glucose levels compared to adminis-
tration at other time points outside the suggested time window.
These findings highlight the critical role of precise insulin dos-
ing and optimal timing in adaptive and reliable diabetes man-
agement. Insulin administration following the algorithm’s rec-
ommendations, maintained glucose levels within the normo-
glycemic range, whereas deviations in either dose or timing led
to significant dysregulation accompanied by hyperglycemia or
hypoglycemia.

2.5. DuoLoop System Integration and Wearable Validation for
Safety Enhancement

The effectiveness of our wearable DuoLoop system in reducing
the safety risk was validated in a type 1 diabetic ratmodel. This in-
tegrated system, which combines a CGM and an insulin pump,
was placed on the rats’ back and wirelessly controlled via Blue-
tooth, ensuring minimal interference with their daily activities
(Figure 5a,b). The operation of the DuoLoop system is outlined
in Figure 5c. When the CGM detects an upward glucose trend
nearing a hyperglycemic state, the algorithm activates the insulin
pump to administer an insulin dose within a designated time
frame. During hyperglycemia, insulin delivery is accelerated, and
once glucose levels return to normoglycemia, the GRI release
rate decreases to sustain stable glucose levels and prevent hypo-
glycemia.
The DuoLoop insulin delivery system demonstrated superior

regulation efficiency compared to its single closed-loop coun-
terparts. First, we compared the DuoLoop system with a sin-
gle chemical closed-loop system (separated GRI injection). In
brief, GRI was administered in 5 U doses (≈15 U/kg) every 7–8
hours to mimic a chemical-only closed-loop system (Figure 5d).
Although glucose levels generally remained within the normo-
glycemic range, remarkable hyperglycemia and hypoglycemia
still occurred. This finding suggests that although GRI can reg-
ulate insulin release in response to glucose fluctuations, the lack
of precise, AI-guided injections could lead to serious outcomes
in diabetic subjects.
We then compared glycemic profiles between the single

electrical closed-loop system and our DuoLoop system (Figure
S16, Supporting Information; Figure 5e,f). The single electrical
closed-loop system was built using a similar procedure as the
DuoLoop system, but with RHI injection for data training. Vi-
sual observation toward the glucose curves indicates that sin-

gle electrical closed-loop system required multiple daily injec-
tions, while the DuoLoop system required fewer due to the longer
normoglycemic duration achieved by GRI at equivalent doses
(as previously shown in Figure 2e). Additionally, the DuoLoop
system exhibited reduced glucose fluctuations compared to the
traditional system, reflected in a smaller SD (2.44 vs 1.42) and
CV (25.14 vs 41.22, Figure 5g,h). Clinical research has revealed
that minimizing glucose fluctuations is essential for effective di-
abetes management.[43] Thanks to the self-regulating insulin de-
livery feature of GRI, the DuoLoop system maintained a higher
percentage of normoglycemic periods (98.82% vs 92.10%, cal-
culated from 1.5 to 24 h, the same below) with fewer instances
of hypoglycemia (0.65% vs 3.89%) and hyperglycemia (0.52%
vs 4.01%) than the traditional system (Figure 5i–k). It is im-
portant to note that both the SinLoop (with RHI) and DuoLoop
(with GRI) systems were implemented using the same AI pre-
diction model and PID controller. Therefore, the observed en-
hancements in glucose regulation with the DuoLoop system can-
not be attributed to differences in the underlying control algo-
rithm. Instead, these improvements arise from the dual-loop con-
figuration with the GRI. This distinction highlights the critical
role of the dual-loop design and the GRI in achieving superior
system performance. Additionally, hematoxylin and eosin (H&E)
staining and Masson’s trichrome staining of injection sites re-
vealed no significant neutrophil infiltration or collagen fiber for-
mation (Figure S17, Supporting Information), confirming the
biocompatibility and safety of the DuoLoop system for in vivo
applications.

3. Conclusion

We have presented a wearable DuoLoop insulin delivery system
to address the safety issues associated with traditional single
closed-loop ones. The 1st closed-loop system automates insulin
delivery through wearable CGMs. The 2nd closed-loop system in-
volves the GRI, where the insulin release rate depends on real-
time in vivo glucose levels. To link the two sections, an AI algo-
rithm was developed by training on extensive glucose data sets,
which enables accurate predictions and guides GRI delivery at
optimal dosage and timing. In vivo validation demonstrated that
the DuoLoop system significantly reduced glycemic fluctuations
and occurrence of hyperglycemia and hypoglycemic compared to
the traditional SinLoop system.
Despite these advantages, some limitations persist. One chal-

lenge lies in dietary management. Diet is a crucial factor in di-
abetes management.[44] However, the diet of diabetic rats in our
current rat model was unrestricted. Another limitation concerns
the clinical applicability of DuoLoop. The current models are de-
veloped based on data from diabetic rat models, and future re-
search should validate the system on other diabetic animals and,
eventually, humans. Additionally, the long-term stability and re-
liability of DuoLoop should be carefully evaluated over extended
periods. Overall, the DuoLoop presented in this work marks an
advancement towards precision diabetes management. We envi-
sion that the proposed dual or multiple closed-loop device con-
cept could be adopted by other wearable systems to regulate
metabolic processes in other diseases, addressing broader clin-
ical needs.
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4. Experimental Section
Materials: PEDOT:PSS aqueous suspension (Clevios PH1000)

was purchased from Heraeus Electronic Material (USA).
Glycerol, dodecylbenzene sulfonic acid (DBSA), sodium chloride, (3-
glycidyloxypropyl) trimethoxysilane (GOPS), calcium chloride (CaCl2),
and 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) were purchased
from the Sigma-Aldrich (USA). D-glucose, GOx, glutaraldehyde, and fer-
rocene, chitosan, and acetic acid were provided by Aladdin Co. (Shanghai,
China). The polyimide (PI) thin film was obtained from the DuPont Co.
(U.S.A.). The biocompatible adhesive polyurethane was provided by 3M
(U.S.A.). The chemicals were used without further purification unless
otherwise specified.

Fabrication of GRI: The GRI was prepared by integrating a polymer,
PEG-PLL-FPBA, with RHI through electrostatic interactions. To fabricate
the polymer, PEG5000 (51.2 mg) and PLL (MW = 30–70 kDa, 54.9 mg)
were dissolved in water and stirred overnight at a pH of 7.3. Subsequently,
a solution of FPBA-NHS (58.4mg) in DMSOwas added to themixture and
allowed to react for an additional 30 minutes. The final product was ob-
tained through lyophilization, yielding 109.6 mg (66.62%). Next, polymer
and RHI were consistently combined at a mass ratio of 10:1 to fabricate
GRI. First, 10 mg of polymer material was dissolved in 1 mL of DI water.
Separately, 10mg of RHI was dissolved in 1mL of an acidic solution (60 μL
of 1 m HCl in 1 mL DI water). Equal volumes of the polymer and RHI solu-
tions were then mixed, and the pH of the mixture was promptly adjusted
to 7.4 using sodium hydroxide.

OECT Fabrication: The PEDOT:PSS ink for the channel material was
prepared as follows: pristine PEDOT:PSS ink was first mixed with GOPS (1
w/w.%), glycerol (5 v/v.%), and DBSA (0.1 v/v.%) and stirred with a vortex
mixer for 3 minutes. The resulting suspension was then filtered through a
polytetrafluoroethylene (PTFE) membrane (0.45 μm pore size) to remove
aggregates and prevent nozzle clogging. The gate, source, and drain elec-
trodes were fabricated by depositing a thin layer of gold on a PI thin film us-
ing mask-assisted e-beam deposition. The PEDOT:PSS channel layer was
deposited between the source and drain electrodes by inkjet printing and
then dried at 110 °C for 15 minutes. A UV-cured resin was applied as an
insulating layer. The hollowmicroneedles to extract ISF were fabricated us-
ing a high-resolution 3D printing system (microArch S240). After printing,
the microneedles were UV-cured to improve strength and durability.

Fabrication of Glucose Gate Electrode: First, 30 mg of glucose oxidase
(GOx) was dissolved in 1mL of PBS solution. Then, 50mg of chitosan and
50 μL of acetic acid were dispersed in 10 mL of DI water, stirred at 500 rpm
for 12 hours at 60 °C. Afterward, 1 mL of the GOx-PBS solution was added
to 1 mL of the chitosan solution and sonicated for 20 minutes prior to
use.[45] For the ferrocene solution, 18.6 mg of ferrocene was dissolved
in 10 mL of ethanol. Then, 4 μL of the ferrocene solution was deposited
onto the gate electrode and dried at room temperature for 1 hour. Next,
4 μL of the GOx/chitosan mixture was applied to the gate electrode and
dried at 4 °C for 3 hours.[46] Finally, the glucose-sensing gate electrode
was fabricated by applying glucose-sensing solution on the pristine gate
electrode.

The Basic Framework of the Algorithm: The first part of the Edge-AI in-
volves a blood glucose prediction algorithm, comprised of a Transformer
network. This network processes real-time CGM data along with historical
records. The input L1 is fed into the encoder, while input L2, along with
zero-padding B3, is fed into the decoder structure. The network’s output,
spanning a future time range t, provides predicted blood glucose varia-
tions within the length of B3. The blood glucose prediction Transformer

network is quantized for deployment on mobile devices. The predicted re-
sults are then transmitted to the insulin pump for insulin dosage adjust-
ments. The second part comprises the GRI injection algorithm, a sustain-
able adaptive PID control algorithm. This algorithm regulates appropri-
ate insulin injection dosages by utilizing current CGM data and the target
blood glucose value. Additionally, it incorporates predicted future trend
variations as input to assist in adjusting the rate parameters of the PID
controller, which can be directly deployed on the insulin pump for edge
computations.

Model Building: The core of the Transformer Encoder-Decoder archi-
tecture lies in the self-attention module and the positional linear projec-
tion network. DuoLoop leverages the Encoder and Decoder to process
long-range and short-range CGM signals, respectively. This mechanism
enables DouLoop to focus on both long-term and short-term modeling of
CGM signals, thereby enhancing its ability to predict future glucose levels
and facilitating the precise release of insulin during delivery.

The Encoder module utilizes multi-head self-attention to process long-
range CGM information. Given a historical CGM signal of length m, the
long-range signal L1 of length n is extracted and fed into the multi-head
self-attention module:

Qen = Wq ⋅ L1, Ken = Wk ⋅ L1, Ven = Wv ⋅ L1 (3)

where Wq ∈ ℝdq×h×d, Wk ∈ ℝdk×h×d and Wv ∈ ℝdv×h×d denote the learn-
able Query, Key and Value matrix in attention core, h represents the num-
ber of attention heads. Finally, the attention computation is given as:

Oen
i = Softmax

(
Qen

i ⋅ Ken
i T√

d

)
V′

en
i (4)

Hen = Oen + Ven (5)

where Oi
en represents the output of the ith attention head, and V′en de-

notes the Value matrix after normalization. Subsequently, the attention
output is combined with the initial Value matrix Ven through a residual
connection to obtain the long-range CGMmodeling output of the Encoder,
denoted as He.

In the Decoder, the attention computationmechanism is essentially the
same as Equation (3). The input to the Decoder is L2, a maskedmulti-head
self-attention mechanism is employed, which yields:

Ode
i = Softmax

(
Mask

(
Qde

i ⋅ Kde
i T)√

d

)
V′

de
i (6)

Hde = Ode + Vde (7)

whereMask(Qi
de

⋅ Ki T
de
) represents the application of a triangular mask to

the scores computed between the Key and Value matrices. Specifically, the
upper triangular portion of the score matrix is masked with negative infin-
ity. This ensures that future information is not accessed during decoding.
In the second module of the Decoder, a cross-attention mechanism is em-
ployed to combine the long-range CGM signals modeled by the Encoder

Figure 5. DuoLlLoop system integration and wearable validation for safety enhancement. a) Schematic (left) and actual images (right) of the validation
of DuoLoop in a type 1 diabetic rat model. b) Trial profile of animal experiments. c) The edge-AI-powered dual closed-loop system. d) Pure chemical
closed-loop treatment of diabetic rats through regular GRI injections (5 U/kg) administered every (left) 7 hours and (right) 8 hours. Comparisons of the
combinational ISF glucose levels and the corresponding algorithm-controlled insulin injection profiles in diabetic rats treated with e) SinLoop and f)
DuoLoop. The glucose curves from top to bottom represent the 95%, 75%, 50%, 25%, and 5% intervals, respectively. Analysis of g) standard deviation, h)
coefficient of variation, i) normoglycemia percentage, j) hyperglycemia percentage, and k) hypoglycemia percentage in diabetic rats treated with SinLoop
(red) and DuoLoop (green). Initial insulin injection was administered to bring blood glucose to a normal level (typically within 1.5 hours). Statistical
analysis includes data collected only after 1.5 hours.
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with the short-range CGM signals from the Decoder. This integration is
achieved using the following equation:

Oi
cross = Softmax

⎛⎜⎜⎜⎝
Mask

(
Qi
de

⋅ Ki T
en

)
√
d

⎞⎟⎟⎟⎠V
′
en

i (8)

Hcross = FFN (Ode) + Vde (9)

In the cross-attention computation, the Query is derived from the De-
coder, while the Key and Value are obtained from the Encoder. Finally, the
model’s prediction results are produced through a Feed-Forward Network
(FFN) layer.

Model Training: The study implemented the model using PyTorch
2.0.1 and trained it on NVIDIA GTX 2080 Ti GPUs. The training process
utilized the Adam optimizer and was conducted 30 epochs. To prevent
overfitting and enhance generalization, an early stopping mechanism with
a patience value of 5 was applied. Mean Squared Error (MSE) was chosen
as the standard loss function for model optimization.

Model Compression: To efficiently deploy the neural network-based
blood glucose prediction algorithm, quantization compression was uti-
lized to reduce the storage size of the model. To verify the predictive accu-
racy of the quantized model, neural network quantization techniques were
employed as follows:

Wint = round
(Wfloat

s

)
(10)

Wq = clamp
(
−2b−1, 2b−1 − 1. Wint

)
(11)

whereWfloat denotes the original 32-bit weight matrix in glucose Trans-
former, s represents the scale factor, which maps the 32-bit matrix to inte-
gers. And b denotes the quantization bit-width (e.g., 4/8),Wq is the weight
matrix post-quantization. Specifically, the original 32-bit model was com-
pressed to 8-bit or even 4-bit, achieving a compression rate of over three
times. This significantly reduces the computational cost of deploying neu-
ral networks while maintaining accurate predictive performance and en-
suring system security (Table S2, Supporting Information).

Validation of the Algorithm on a UVA/Padova Simulator: The fluctua-
tions in blood glucose levels from CGM data and real-time computed in-
sulin injection doses were simulated over a 24-hour period under random
dietary intake. With the support of the closed-loop algorithm, the blood
glucose levels of simulated diabetic patients were effectively maintained
within the target range. To evaluate the algorithm’s performance, exten-
sive blood glucose variation data were collected over 30 days from eight
virtual patients. The Transformer-based blood glucose prediction model
was trained using 24 days (80%) of data from these virtual patients, while
the remaining six days of data were used for testing. The figure presents
a continuous sequence of 1000 predicted test data points for a single pa-
tient. The red curve represents the algorithm’s predicted values, whereas
the black curve illustrates the actual blood glucose variations generated by
the simulator.

General Animal Experiment Protocol: The animal procedures were ap-
proved by the Animal Ethics Committee of Guangzhou Medical University
(protocol no. GY2023-590). Male Sprague-Dawley (SD) rats (300–350 g,
aged 6–8 weeks) were obtained from the Guangdong Medical Labora-
tory Animal Center. 6–8-week-old male SD rats were selected because this
age provides stable metabolic parameters and suitable sensitivity to STZ,
ensuring reliable induction of hyperglycemia. Before experiments, all an-
imals were acclimated for one week under standardized, pathogen-free
conditions at the Laboratory Animal Center of Guangzhou Medical Uni-
versity. Type 1 diabetes was induced in the rats by a single injection of
STZ (110 mg kg−1) following a 12-hour fast. Diabetic rats had free access
to food and water throughout the experiment unless otherwise specified.
They were housed in a controlled environment with an ambient tempera-
ture of 20–26 °C and relative humidity of 50–70%. Diabetic rats were di-

vided into groups and given subcutaneous injections of RHI or GRI. Efforts
were made to minimize animal suffering, including the use of isoflurane
anesthesia, and to reduce the number of animals used in the study.

Intraperitoneal Glucose Tolerance Test: Diabetic rats were administered
either RHI or GRI at a dose of 25 U/kg. Two hours later, all rats received
an intraperitoneal injection of glucose (0.3 g mL−1 in PBS, 1.5 g kg−1). ISF
glucose levels were continuously monitored and analyzed thereafter.

Histopathological Study: The diabetic rats received subcutaneous in-
jections of either PBS (control group) or GRI (experimental group, 25
U/kg, n = 3) on days 1, 3, 5, and 7. Subcutaneous tissue sections from the
injection sites were extracted, fixed in 4% paraformaldehyde, embedded in
paraffin, and then sliced into thin sections. H&E and Masson’s trichrome
staining images were obtained using a digital slide scanner (VS200, Olym-
pus) and analyzed with Olympus Image Viewer software.

Statistical Analysis: All results are presented as means ± standard de-
viation (SD). Two tailed unpaired Student’s t-test was used for compar-
isons between two groups. Differences between experimental and control
groups were considered statistically significant at p < 0.05. In this study,
significance levels are indicated as *p < 0.05, **p < 0.01, ***p < 0.001,
and ****p < 0.0001.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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