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A wearable in-sensor computing 
platform based on stretchable organic 
electrochemical transistors

Dingyao Liu1,4, Xinyu Tian    1,4, Jing Bai    1,4, Shaocong Wang    1,4, Shilei Dai    1, 
Yan Wang    1, Zhongrui Wang    1,2   & Shiming Zhang    1,3 

Organic electrochemical transistors could be used in in-sensor computing 
and wearable healthcare applications. However, they lack the conformity 
and stretchability needed to minimize mechanical mismatch between the 
devices and human body, are challenging to fabricate at a scale with small 
feature sizes and high density, and require miniaturized readout systems 
for practical on-body applications. Here we report a wearable in-sensor 
computing platform based on stretchable organic electrochemical 
transistor arrays. The platform offers more than 50% stretchability by using 
an adhesive supramolecular buffer layer during fabrication that improves 
robustness at interfaces under strain. We fabricate stretchable transistor 
arrays with feature sizes down to 100 μm using a high-resolution six-channel 
inkjet printing system. We also develop a coin-sized data readout system for 
biosignal acquisition. We show that our coin-sized, smartwatch-compatible 
electronic module can provide wearable in-sensor edge computing.

The development of wearable computing devices for applications in 
remote healthcare monitoring and environmental sensing requires 
the integration of sensing and computing within a single hardware 
system1–4. Such in-sensor computing could, in particular, enhance the 
power efficiency of electronic systems5,6. Research on the integration of 
sensing and computing is progressing, but various challenges remain. 
One is how to create a hardware unit with mechanical stretchability 
and conformability7–9, as motion artefacts caused by the mechanical 
mismatch between rigid hardware and the human body can affect the 
quality and reliability of gathered data8.

Organic electrochemical transistors (OECTs) are promising 
devices for use in sensing10, computing11,12 and in-sensor computing 
applications13. The gate electrode of OECTs can be used to detect elec-
trochemical signals of interest, and the OECT—as a whole—amplifies 
the signal14. OECTs are typically based on the conducting polymer poly
(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)14. 
Importantly, PEDOT:PSS OECTs can offer excellent biocompatibility 

and water stability for up to 800 days15, making them useful for prac-
tical wearable and implantable applications16. They can also work at 
low voltages (around millivolts) and maintain high sensitivity and 
computing efficiency17.

A range of methods to incorporate OECTs in wearable appli-
cations have been developed18, including transfer patterning19, 
spray coating20, microcracked thin gold (Au) films21, pre-straining 
of substrates22, laser printing23, screen printing24 and micropat-
tern design25–27. Furthermore, these devices have been used in both  
sensing and computing applications. However, there are only a few 
reports on intrinsically stretchable OECTs (ISOECTs) being used in 
high-density integrated biocircuits28,29. Developing ISOECTs requires 
materials capable of serving as stretchable channels, electrodes, gel 
electrolytes and insulators, as well as the development of scalable 
manufacturing methods. System-level research that can validate 
the efficacy and reliability of the technology in practical scenarios 
is also needed.
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glycol)diglycidyl ether (PEGDE), to replace the commonly used 
(3-glycidyloxypropyl)trimethoxysilane (GOPS). This is because PEGDE 
is a mechanically softer crosslinker than GOPS32, which helps increase 
the stretchability of the PEDOT:PSS films (Supplementary Fig. 1). Addi-
tionally, we synthesized a tough adhesive polymer (TAP; Methods) as 
a buffer layer, the use of which can further improve the stretchability 
of the device by facilitating energy dissipation through autonomous 
breakage and reformation of dynamic bonds33. Besides, the dopamine 
(DA) group was grafted on the side chain of TAP molecules to improve 
their adhesion with PEDOT:PSS, preventing interlayer delamination 
(Fig. 2b–c and Supplementary Figs. 2 and 3). Last, we used an intrinsi-
cally stretchable ion gel composed of ionic liquids (ILs), polyacrylic 
acid (PAA) and poly(3-dimethyl (methacryloyloxyethyl) ammonium 
propane sulfonate) (PDMAPS), as the solid-state electrolytes. PDMAPS/
PAA/ILs were chosen for their excellent ambient stability, printability34 
and biocompatibility (Supplementary Figs. 4–6), permitting their easy 
integration into ISOECTs.

Through the systematic material development, processing and 
assembling mentioned above, the performance of each layer was 
ensured within the targeted 50% strain range (Supplementary Figs. 3, 
4, 7 and 8). The combined use of the soft crosslinker PEGDE and the 
TAP buffer layer was verified, leading to a minimal performance loss 
of ISOECTs under strain (Fig. 2d–g). The figure of merit of the resultant 
device is on par with those fabricated on silicon and plastic substrates. 
Specifically, the on/off ratios remained above 103 under all the strain 
values, and the transconductance (Gm) exceeded 1 mS (width (W)/
length (L) = 2, Vgs = 0.3 V). These results confirm the viability of the 
established material protocols. It is worth mentioning that using a 
SEBS substrate with low oxygen permeability is the key to ensuring a 
high on/off ratio of the ISOECTs. Details of materials processing are 
described in the Methods.

In this Article, we report the scalable fabrication of micro-ISOECT 
arrays and their integration into a wearable integrated and soft 
electronic (WISE) platform (Fig. 1). The WISE platform is created by 
developing a standardized material protocol that provide OECTs 
with stretchability of greater than 50%. This is achieved by using an 
adhesive supramolecular buffer layer during fabrication to enhance 
strain-related robustness at interfaces. We use a high-resolution inkjet 
printing system with six channels, which provides the one-shot manu-
facturing of ISOECT arrays with a yield of over 95% and feature sizes 
of 100 μm. We also develop a coin-sized data readout unit that allows 
biosignals to be acquired and processed at source. We benchmark the 
performance of our WISE platform against existing platforms, illustrat-
ing its competitiveness in a range of applications.

Stretchable OECT design
ISOECTs are designed with an in-plane structure consisting of a 
stretchable elastomeric substrate, a semiconducting polymer chan-
nel (PEDOT:PSS), a solid-gel electrolyte as the gating medium and Au 
source (S)/drain (D)/gate (G) electrodes (Fig. 2a). After identifying an 
optimal material solution for each functional layer as well as the whole 
assembly, we successfully endowed ISOECTs with a stretchability of 
50% (sufficient to accommodate skin deformation) without major 
compromise on performance or stability.

To begin, we selected styrene–ethylene/butylene–styrene (SEBS), 
a common elastomer for stretchable electronics, as the substrate. 
For the electrodes, we used ultrathin Au films (thickness, 20 nm) to 
obtain intrinsic stretchability on the SEBS substrate30. Next, we used 
PEDOT:PSS as the channel material. PEDOT:PSS was selected for its 
excellent water stability and mixed ionic–electronic conductivity31. 
To enhance the stretchability and water stability of the PEDOT:PSS 
channel on SEBS, we introduced the crosslinker, poly(ethylene 
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Scalable fabrication of stretchable OECT array
The established material solutions permit the assembly of 
high-performing and robust ISOECT units, but constructing functional 
circuits requires high-density device arrays. However, compatibility 
issues arise when patterning those stretchable materials with conven-
tional cleanroom techniques designed for rigid silicon electronics. For 
example, procedures such as annealing and lift-off of the photoresist 
can cause deformation and deterioration of elastomers and gels, affect-
ing alignment, device yield and device-to-device uniformity.

To address the fabrication challenges, we developed a multichan-
nel inkjet-printing-based platform (Supplementary Fig. 9). The process 
flow to fabricate ISOECT arrays is illustrated in Fig. 3a,b (detailed in the 
Methods). First, the ink of TAP was prepared by dissolving it in an etha-
nol/butyl acetate mixture, followed by printing it on the pre-prepared 
SEBS substrate as a buffer layer. Next, electrodes (S, D and G) made of 
ultrathin Au electrodes (20 nm) and interconnects were patterned 
with a shadow mask. Ink of silver nanowires was subsequently printed 
on the interconnect region to ensure high conductivity under strain 
(Supplementary Fig. 10). Alternatively, the stretchable interconnects 
and electrodes can also be fabricated by the direct inkjet printing of 
composited Au ink, but have to compromise on conductivity (Sup-
plementary Fig. 11). Afterwards, filtered ink of PEDOT:PSS was printed 
as the channel (Supplementary Fig. 12). Finally, the ion-gel electrolyte 
was printed to bridge the gate electrode and channel.

The printing resolution achieved 100 μm for all the functional 
layers, with a high device yield of 95% (Fig. 3c–f). With the established 
printing platform, we successfully printed a 10 × 10 ISOECT array 
within a 1.44 cm2 area, sufficient for wearable sensing and computing 
applications. The metrics of the device unit, such as the on/off ratio 

(>103), mobility (~0.8 cm2 V–1 s–1), Gm (~1 mS) and stretchability (50%), 
were comparable with the reference device (Supplementary Fig. 13). 
Minimal device-to-device variations were achieved under different 
strain values, benefiting from the high uniformity and reliability of the 
printing process (Fig. 3g–j and Supplementary Fig. 14).

Stretchable OECTs for neuromorphic computing
Having determined the materials solutions and fabrication protocols 
for ISOECT arrays, we subsequently explored their use as conform-
able, nonlinear and low-power neuromorphic computing hardware. To 
exploit the full potential of the ISOECT array, we adopted the reservoir 
computing (RC) framework, a promising machine learning algorithm 
known for its minimal requirements on computing resources and 
ability to operate with small training datasets (Fig. 4a)35. RC utilize 
neuron-like nonlinear hardware units in which OECTs excel. Structur-
ally, OECTs resemble three-terminal transistors, where the gate elec-
trode is analogous to the presynapse of a neuron, receiving input ionic 
signals, whereas the channel between the source and drain electrodes 
is analogous to a post-synapse, responding to the gate signals36. Opera-
tionally, the signals at the gate electrode propagate through nonlinear 
ionic transports via the electrolyte37,38, modulating the channel con-
ductance via a nonlinear electrochemical doping/dedoping process 
(Supplementary Fig. 15)39. Additionally, the inherent stretchability of 
ISOECT arrays favours their uses at soft biological interfaces.

To implement ISOECT arrays in the RC network, we first evaluated 
their potential in distinguishing drain currents (Ids) as different digital-
ized gate inputs. We began by inputting four-bit pulse streams at the 
gate electrode and recording the corresponding output Ids (Fig. 4b), 
where ‘1’ denotes applying a gate voltage (0.4 V) and ‘0’ denotes no 
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voltage is applied (0 V). As expected, when a single pulse was applied 
at the gate, Ids exhibited a nonlinear drop. The removal of the pulse 
caused Ids to nonlinearly return to its initial value. The application of 
multiple pulses led to a steeper drop in Ids. Importantly, we observed 
distinguishable Ids values for all the 16 sequential pulse inputs, rang-
ing from ‘0000’ to ‘1111’, benefiting from the excellent nonlinearity of 
ISOECTs. In other words, ISOECTs could generate 16 distinguishable 
analogue Ids values for the corresponding 16 sequential input states 
(Fig. 4c and Supplementary Figs. 16 and 17).

Subsequently, we explored the use of one ISOECT array to clas-
sify digits in an image (Fig. 4d). Each digit is composed of 20 pixels 
(black/white) arranged in five rows, with four pixels in each row. After 
converting the black/white pixels into sequential high-/low-voltage 
pulses and feeding them to the reservoir (that is, the ISOECT array), 
distinguishable Ids patterns were obtained (Fig. 4e,f). These patterns 
remained distinguishable under strain (Fig. 4g). We then further veri-
fied the capability of ISOECT for predicting handwritten digits from 
the Mixed National Institute of Standards and Technology dataset 
(Supplementary Fig. 18 and Methods). To facilitate processing, we first 

binarized the handwritten characters to a 28 × 28 pixel2 image (black/
white), which was then converted into a 4 × 196 array that could be fed 
to the ISOECT reservoir. Each neuron of the reservoir was assigned a 
temporary Ids value of a corresponding ISOECT. The sparse connections 
of the readout map, which link the reservoir layer and the output layer, 
were optimized during the training process. Since only the sparse con-
nection in the output layer needs to be trained, the above approach 
could significantly reduce data processing costs (Supplementary 
Figs. 19 and 20).

To visualize the distribution of the high-dimensional feature vec-
tors encoded by the ISOECT reservoir, we used a principal component 
analysis to reduce them to points in a three-dimensional space. Typi-
cally, samples from the same class form clusters, whereas those from 
different classes are isolated (Supplementary Fig. 21). Figure 4h depicts 
the results showing that the ISOECT array can achieve a prediction 
accuracy of up to 90%, comparable with conventional artificial neu-
ral networks. Remarkably, even after reducing the operating voltage 
from 400 to 4 mV (Supplementary Fig. 22), ISOECTs were still capable 
of distinguishing the 16 sequential pulse inputs and maintain a high 
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(as Vgs) to ISOECTs and determining Ids readout by using the PERfECT unit, 
which is subsequently assigned to ISOECT neurons for gesture classification 
through the fully connected (FC) layer. g, Classification accuracy. h, Evolution 
of classification accuracy under 0% and 50% strain. i, Comparison of confusion 
matrices under 0% and 50% strain.
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prediction accuracy. The above voltage reduction corresponds to a 
significant decrease in power consumption from 36,000 to 36 nW 
(Fig. 4i), demonstrating the energy efficiency of an ISOECT RC net-
work. Figure 4j illustrates, in detail, the advantages of ISOECTs over 
other technologies. ISOECTs simultaneously achieved low power con-
sumption and mechanical stretchability, an exclusive feature not yet 
achieved by other RC hardware units40–44.

WISE platform for wearable in-sensor computing
The presented protocols for constructing ISOECT arrays and stretch-
able RC networks open a wide range of applications. As an example, 
we demonstrate their use for wearable gesture recognition. To enable 
wearable data acquisition, we combined the arrays with our recently 
developed coin-sized readout unit, personalized electronic reader 
for electrochemical transistors (PERfECT) (Supplementary Fig. 23)45. 
The WISE platform uses an ISOECT array for both electromyography 
(EMG) sensing (leveraging the high Gm value of ISOECTs; Supplementary 
Fig. 24) and data computing (Fig. 5a–e). The detailed working process 
is illustrated in Fig. 5f. (1) Sensing: ISOECT sensors detect EMG signals 
and amplify them at their origin; then, the temporal EMG signals are 
sampled using a sliding window with a size of 640 ms and a stride of 
40 ms. (2) Encoding: the PERfECT system encodes the analogue EMG 
signals into four-bit sequential voltage pulse streams to feed the ISOECT 
(Supplementary Fig. 25). (3) The ISOECT array (4 × 4) analysed the input 
EMG signal sequence, implementing in-sensor RC and yielding the 
predicted results.

Figure 5g–i demonstrates that the WISE platform can accurately 
recognize different gestures from EMG signals, with negligible motion 
artefacts owing to the acquired stretchability. Compared with con-
ventional artificial neural networks, the ISOECT RC unit significantly 
reduces the memory cost needed for the edge computing of EMG 
signals that contain complex temporal and sequential information 
(Supplementary Fig. 26). The ISOECT EMG sensor consumed an energy 
of approximately 0.035 nJ per operation, whereas the ISOECT RC con-
sumed less than 0.56 nJ. The energy consumption is among the lowest 
in existing hardware2,40,42,44,46,47, demonstrating the competitiveness 
of our platform for practical wearable edge-computing applications.

Conclusions
We have reported an integrated system for wearable health informatics 
that is based on ISOECT technologies. To develop our WISE platform, we 
first established a standardizable material protocol providing intrinsic 
stretchability to OECTs. To facilitate strain dissipation and mechanical 
stability, we synthesized an adhesive supramolecular buffer layer (TAP). 
Subsequently, we developed a multichannel inkjet printing system (six 
channels), providing one-shot and scalable fabrication of ISOECT arrays 
with a high yield (>95%) and featured sizes down to 100 μm. Finally, a 
coin-sized readout unit was developed to provide on-site data process-
ing. As an example, we showed that the WISE platform can be used for 
the in situ signalling and analysis of EMG, offering high prediction 
accuracy (~90%) for wearable gesture recognition.

By focusing on a system engineering approach and solving com-
patibility issues between parts of the device, we have been able to show 
the potential of ISOECTs in practical on-body wearable applications. 
ISOECTs combine low-voltage operation (<1 V), high Gm and good 
mechanical properties, making them advantageous for biosensing, 
and their low-cost and scalable fabrication makes them well suited to 
wearable applications.

Here we used depletion-mode PEDOT:PSS OECTs due to their 
high stability and reliability. However, to deliver lower standby power 
and facilitate further scaling, enhancement-mode ISOECTs will be 
needed. There is also the potential to improve the frequency response 
of ISOECTs. Compared with their rigid counterparts, ISOECTs are 
relatively slow due to the use of ion gels with slow ion transport. Our 
ISOECTs with a channel length of 100 μm can achieve cutoff frequencies 

between 102 and 103 Hz, sufficient to cover a range of electrophysi-
ological signals. Further improvements in frequency response could be 
achieved by optimizing the device structure or adjusting the operating 
voltages48,49.

Methods
Materials
PEDOT:PSS aqueous suspension (Clevios PH1000) was purchased from 
Heraeus Electronic Material. PAA (average Mw = 2,000), PEGDE (average 
Mn = 500), glycerol, dodecylbenzene sulfonic acid (DBSA), sodium chlo-
ride and ammonium persulfate were purchased from Sigma-Aldrich. 
SEBS compounds H1221 with poly(ethylene-co-butylene) volume frac-
tions of 88% were provided by Asahi Kasei. Toluene, PAA (average 
Mw = 250,000), zwitterionic monomer 3-dimethyl(methacryloyloxy
ethyl) ammonium propane sulfonate, 2,2-bis(hydroxymethyl)propi-
onic acid (DMPA, 98%), 2,2-dimethoxypropane (DMP, 98%), sodium 
chloride (NaCl, ≥99.5%), sodium bicarbonate (NaHCO3, ≥99.8%), 
N-hydroxysuccinimide (NHS, 98%), N-(3-dimethylaminopropyl)-
N′-ethylcarbodiimide hydrochloride (EDC-HCl, 98.5%), methanol, 
dichloromethane (DCM), hydrochloric acid (36%–38%) and acetone 
were obtained from Aladdin. Dopamine hydrochloride (DA-HCl, 98%), 
polyteramethylene glycol (Mn = 1,000), dibutyltin dilaurate (95%), tol-
uenesulfonic acid, isophorone diisocyanate, trifluoroacetic acid, dibu-
tyltin dilaurate and 1,4-butanediol were purchased from Sigma-Aldrich 
and dried under a vacuum before use. 1-Ethyl-3-methylimidazolium 
ethyl sulfate was obtained from TCI. The ink of silver nanowires 
(2–5 μm, 10 mg ml–1) was purchased from Haitai Naxin Technology. 
The Au ink ( JG-125, 25 mg ml–1) was purchased from Novacentrix.

Preparation of PEDOT:PSS mixtures
PEDOT:PSS aqueous suspension was first stirred for 3 min and then 
diluted with water with a 1:1 volume ratio. Then, the diluted mixture 
was mixed with glycerol (5 v/v%), GOPS (0.05 v/v%), PEGDE (0.2 v/v%) 
and DBSA (0.25 v/v%) with a vortex mixer (MX-S). The dilution process 
facilitated the process of inkjet printing and prevented aggregation 
on the print head. The addition of glycerol increases the film conduc-
tivity. DBSA was added to facilitate the wetting property of films on 
substrates. GOPS or PEGDE was added to crosslink PEDOT:PSS. Then, 
the mixed suspension was filtered with a polytetrafluoroethylene mem-
brane (aperture size, 0.22 μm) to remove aggregates for further use.

Synthesis of TAP
The synthesis of TAP according to previously reported methods50 is 
listed below.

	i.	 Synthesis of DMP-DMPA. DMPA (100 mmol) and DMP 
(130 mmol) were dissolved in 100 ml acetone, and then 0.1 g 
toluenesulfonic acid (0.53 mmol) was added at room tempera-
ture for a 4 h reaction. Then, 50 mmol NaHCO3 was added to 
neutralize the solution and stirred for an additional 20 min; the 
residual solid was removed by filtration. Then, the crude prod-
uct was dried and dissolved in DCM. Finally, after drying under 
50 °C overnight, DMP-DMPA was obtained.

	ii.	 Synthesis of DMP-DMPA-NHS. DMP-DMPA (50 mmol) and NHS 
(60 mmol) were added into a 500 ml single-necked flask, and 
dissolved by 200 ml DCM. Then, EDC-HCl (120 mmol) was add-
ed and stirred for 2.5 h at 0 °C and 20 h at room temperature for 
reaction. Then, the crude product was washed with saturated 
NaHCO3 solution, dilute hydrochloric acid solution and water. 
Anhydrous sodium sulfate was used to remove the residue 
water in organic phase. After filtration and drying overnight at 
60 °C in a vacuum, the white solid product (DMP-DMPA-NHS) 
was obtained.

	iii.	 Synthesis of DMP-DMPA-DA. DA-HCl (30 mmol) was added to 
a 250 ml three-necked flask under a nitrogen atmosphere and 
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then dissolved in a mixture of 70 ml DCM and 70 ml methanol. 
DMP-DMPA-NHS (20 mmol) was then added for the reaction 
and stirred at 0 °C for 20 h. After the solvent evaporation, a 
yellow viscous material was obtained. Then, the material was 
washed with a dilute hydrochloric acid solution. DMP-DMPA-DA 
can then be obtained by collecting the white precipitate and 
dried at 50 °C in a vacuum overnight.

	iv.	 Synthesis of DMPA-DA. In a 150 ml three-necked flask under 
a nitrogen atmosphere, 15 mmol DMP-DMPA-DA was added. 
Then, 100 ml methanol and 15 mmol trifluoroacetic acid were 
added and stirred at room temperature for 16 h. After that, the 
crude product was obtained by filtration, and concentrated in 
a vacuum. Finally, DMPA-DA was obtained by drying at 50 °C 
overnight in a vacuum.

	v.	 Synthesis of TAP. In a three-necked flask equipped with a 
mechanical stirrer under nitrogen, add two molar equivalents 
of isophorone diisocyanate and dibutyltin dilaurate. Then, 
add one molar equivalent of polyteramethylene glycol and stir 
at 75 °C for 3.5 h. DMPA-DA and 1,4-butylene glycol were then 
added to the prepolymer and stirred at 85 °C for 4 h. Then, the 
reactant was poured into a polytetrafluoroethylene plate and 
placed in an oven at 50 °C overnight to complete the reaction.

Synthesis of stretchable gel
First, zwitterionic monomer 3-dimethyl(methacryloyloxyethyl) ammo-
nium propane sulfonate was mixed with an IL (with a molar ratio of 
1:1.25) and then initiated by ammonium persulfate (0.2 mol%) in a 
PAA aqueous solution. The molar ratio of the monomer units of PAA 
and PDMAPS was fixed at 1:1, and the monomer concentration during 
polymerization is 30 wt%. The polymerization proceeded at 80 °C for 
6 h under nitrogen protection. In the final samples after being dried, 
the molar ratio of PDMAPS, PAA and IL is 1:1:1.25.

Fabrication of the ISOECT array
For ISOECT devices, the stretchable substrate was fabricated by casting 
a SEBS solution (10 w/w% in toluene) in a glass Petri dish, followed by 
solvent evaporation in a fume hood under room temperature for 2 days. 
Then, the patterning of the functional layer was based on our custom-
ized multichannel inkjet printer. First, the stretchable substrate was 
thoroughly cleaned with ethanol and deionized water and completely 
dried before the next step. Cleaned substrates were treated with an 
ultraviolet–ozone cleaner for 10 min. Immediately after this treat-
ment, a layer of TAP was patterned by inkjet printing the ink (1 w/w% 
in EtOH (80%)/butyl acetate (20%) solution), followed by 30 min of 
baking at 60 °C to cure the buffer layer. Then, stretchable electrodes 
were patterned by vapour deposition of nano Au (20 nm) through an 
in situ printed water-soluble shadow mask (PAA; average Mw = 2,000), 
followed by water development. A firm positioning fixture was cus-
tomized on the printing platform for sample repositioning. In the 
area of interconnects, a layer of silver nanowires was printed on top 
to guarantee conductivity under strain. After that, PEDOT:PSS was 
printed between the S and D electrodes as the channel, followed by 
baking at 100 °C for 30 min. Afterwards, a layer of TAP was printed on 
the S and D electrodes as insulation to minimize the leakage current. In 
the end, the electrolyte was printed to connect the gate and channel. 
After curing at room temperature overnight, the architecture of the 
OECT can be completed.

Characterization
The electrical performance of the PEDOT:PSS film was measured using 
Agilent B2900A controlled with Python software (Windows 64-bit 
3.10). The strain test of the film was performed with a tensile machine 
(Feinixs, FMSXX 80-50-50). The cracking of the PEDOT:PSS film under 
strain was studied with a Nikon optical microscope. For transistor 
characterization, the transfer, output and transient responses were 

measured with a customized wearable characterization device, that 
is, PERfECT. Details can be found in our previous work45.

Simulations
The single fully connected (FC) perceptron layer was used to fit the 
weights of the output layer. The cross-entropy loss is minimized by batch 
gradient descent using the adaptive momentum estimations (learning 
ratio, 0.01) optimizer. The accuracies of the handwriting classification 
were obtained as follows: the current flowing through the ISOECT device 
in the reservoir at the final time step was used as the input to the output 
layer. The cross-entropy loss was minimized by a mini-batch gradient 
descent using the Adam optimizer (learning rate, 0.001).

Electrical component
The circuit diagram of PERfECT was designed using open-access 
electronic design automation software (LCEDA, lceda pro-windows- 
x64-2.2.27.1). The printed circuit board (PCB) of PERfECT was fabricated 
by a commercial PCB manufacturer ( JLCPCB). All these electronic and 
analytical components were ordered from DigiKey and then integrated 
into the PCB. Customized assembly of these units was carried out in 
cooperation with SESIC. The circuit was programmed using the Joint 
Test Action Group interface, and the circuit firmware was developed 
in C language (C11/C18). A multilayer fabrication process was used to 
reduce the size of the PCBs. More details about the readout system 
can be found in our previous work45. To ensure the sustained and reli-
able operation of the entire system, a rechargeable lithium polymer 
battery was used as the power source. The battery was connected to a 
low-dropout linear voltage regulator (ADP7112, Analog Devices), which 
effectively regulates and supplies a stable voltage output. The local 
processing relies on a Bluetooth Low Energy (BLE) system-on-a-chip 
(nRF52840-CKAA, Nordic Semiconductor). This multifunctional com-
ponent serves as the Bluetooth communication module and facilitates 
the storage and execution of the final output layer of the RC network. 
For wireless data transmission, the BLE system-on-a-chip uses a min-
iature ceramic antenna operating at 2.45 GHz.

Then, to implement RC into the wearable gesture recognition 
system, the design and deployment of the final FC layer requires careful 
considerations to better balance the computational power consump-
tion and accuracy. To train and obtain the weights inside the FC layer, 
pre-collected EMG data were randomly divided into three datasets: 
60% for training, 20% for validation and 20% for testing. Considering 
the limited data storage space and computational power, the model 
parameters were then frozen and quantized, resulting in an eight-bit 
network with a reduced size of less than 20 kB. Finally, the quantized 
FC layer was transformed into a C array format, enabling compilation 
into the system-on-a-chip program.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data that support the findings of this study are available from the cor-
responding authors upon reasonable request.

Code availability
The code used for RC is available via GitHub at https://github.com/
HKU-WISE-Group/OECT-RC.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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Data
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Research sample N/A

Sampling strategy N/A

Data collection N/A
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Reproducibility N/A
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