nature electronics

Article

https://doi.org/10.1038/s41928-024-01250-9

A wearablein-sensor computing
platformbased on stretchable organic
electrochemical transistors

Received: 10 October 2023

Accepted: 21 August 2024

Published online: 2 October 2024

Dingyao Liu**, Xinyu Tian®"4, Jing Bai ®**, Shaocong Wang ®'*, Shilei Dai®’,
Yan Wang®', Zhongrui Wang © >

& Shiming Zhang ®'?

W Check for updates

Organicelectrochemical transistors could be used in in-sensor computing
and wearable healthcare applications. However, they lack the conformity

and stretchability needed to minimize mechanical mismatch between the
devicesand human body, are challenging to fabricate at a scale with small
feature sizes and high density, and require miniaturized readout systems
for practical on-body applications. Here we report a wearable in-sensor
computing platform based on stretchable organic electrochemical
transistor arrays. The platform offers more than 50% stretchability by using
an adhesive supramolecular buffer layer during fabrication thatimproves
robustness at interfaces under strain. We fabricate stretchable transistor
arrays with feature sizes down to 100 um using a high-resolution six-channel
inkjet printing system. We also develop a coin-sized datareadout system for
biosignal acquisition. We show that our coin-sized, smartwatch-compatible
electronic module can provide wearable in-sensor edge computing.

The development of wearable computing devices for applications in
remote healthcare monitoring and environmental sensing requires
the integration of sensing and computing within a single hardware
system'™.Suchin-sensor computing could, in particular, enhance the
power efficiency of electronic systems>®. Research on the integration of
sensing and computing is progressing, but various challenges remain.
One is how to create a hardware unit with mechanical stretchability
and conformability”?, as motion artefacts caused by the mechanical
mismatch betweenrigid hardware and the humanbody can affect the
quality and reliability of gathered data®.

Organic electrochemical transistors (OECTs) are promising
devices for use in sensing'’, computing''? and in-sensor computing
applications®. The gate electrode of OECTs can be used to detect elec-
trochemical signals of interest, and the OECT—as a whole—amplifies
thesignal™. OECTs are typically based on the conducting polymer poly
(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)™.
Importantly, PEDOT:PSS OECTs can offer excellent biocompatibility

and water stability for up to 800 days”, making them useful for prac-
tical wearable and implantable applications'. They can also work at
low voltages (around millivolts) and maintain high sensitivity and
computing efficiency”.

A range of methods to incorporate OECTs in wearable appli-
cations have been developed', including transfer patterning'’,
spray coating®, microcracked thin gold (Au) films*, pre-straining
of substrates?, laser printing®, screen printing?* and micropat-
tern design® 7. Furthermore, these devices have been used in both
sensing and computing applications. However, there are only a few
reports on intrinsically stretchable OECTs (ISOECTs) being used in
high-density integrated biocircuits®**. Developing ISOECTs requires
materials capable of serving as stretchable channels, electrodes, gel
electrolytes and insulators, as well as the development of scalable
manufacturing methods. System-level research that can validate
the efficacy and reliability of the technology in practical scenarios
isalso needed.
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Fig.1|Design strategy for coin-sized wearable in-sensor computing unit (WISE platform) based on ISOECT arrays. a-c, The platformincludes an inkjet-printed
ISOECT array (a), an ISOECT-array-based RC network (b) and a miniaturized readout unit for wearable data acquisition and analysis (c).

Inthis Article, we report the scalable fabrication of micro-ISOECT
arrays and their integration into a wearable integrated and soft
electronic (WISE) platform (Fig. 1). The WISE platformis created by
developing a standardized material protocol that provide OECTs
with stretchability of greater than 50%. This is achieved by using an
adhesive supramolecular buffer layer during fabrication to enhance
strain-related robustness at interfaces. We use a high-resolution inkjet
printing system with six channels, which provides the one-shot manu-
facturing of ISOECT arrays with a yield of over 95% and feature sizes
of 100 pm. We also develop a coin-sized data readout unit that allows
biosignals tobe acquired and processed at source. We benchmark the
performance of our WISE platform against existing platforms, illustrat-
ing its competitiveness in arange of applications.

Stretchable OECT design
ISOECTs are designed with an in-plane structure consisting of a
stretchable elastomeric substrate, a semiconducting polymer chan-
nel (PEDOT:PSS), a solid-gel electrolyte as the gating medium and Au
source (S)/drain (D)/gate (G) electrodes (Fig. 2a). After identifying an
optimal material solution for each functional layer as well as the whole
assembly, we successfully endowed ISOECTs with a stretchability of
50% (sufficient to accommodate skin deformation) without major
compromise on performance or stability.

Tobegin, we selected styrene-ethylene/butylene-styrene (SEBS),
a common elastomer for stretchable electronics, as the substrate.
For the electrodes, we used ultrathin Au films (thickness, 20 nm) to
obtain intrinsic stretchability on the SEBS substrate®. Next, we used
PEDOT:PSS as the channel material. PEDOT:PSS was selected for its
excellent water stability and mixed ionic-electronic conductivity®.
To enhance the stretchability and water stability of the PEDOT:PSS
channel on SEBS, we introduced the crosslinker, poly(ethylene

glycol)diglycidyl ether (PEGDE), to replace the commonly used
(3-glycidyloxypropyl)trimethoxysilane (GOPS). This is because PEGDE
is amechanically softer crosslinker than GOPS*, which helpsincrease
the stretchability of the PEDOT:PSS films (Supplementary Fig. 1). Addi-
tionally, we synthesized a tough adhesive polymer (TAP; Methods) as
abuffer layer, the use of which can further improve the stretchability
of the device by facilitating energy dissipation through autonomous
breakage and reformation of dynamic bonds*. Besides, the dopamine
(DA) group was grafted on the side chain of TAP molecules to improve
their adhesion with PEDOT:PSS, preventing interlayer delamination
(Fig.2b-cand Supplementary Figs.2 and 3). Last, we used an intrinsi-
cally stretchable ion gel composed of ionic liquids (ILs), polyacrylic
acid (PAA) and poly(3-dimethyl (methacryloyloxyethyl) ammonium
propanesulfonate) (PDMAPS), as the solid-state electrolytes. PDMAPS/
PAA/ILs were chosen for their excellent ambient stability, printability**
and biocompatibility (Supplementary Figs.4-6), permitting their easy
integration into ISOECTs.

Through the systematic material development, processing and
assembling mentioned above, the performance of each layer was
ensured within the targeted 50% strain range (Supplementary Figs. 3,
4,7 and 8). The combined use of the soft crosslinker PEGDE and the
TAP buffer layer was verified, leading to a minimal performance loss
of ISOECTs under strain (Fig. 2d-g). The figure of merit of the resultant
deviceis on parwith those fabricated onsilicon and plastic substrates.
Specifically, the on/off ratios remained above 10° under all the strain
values, and the transconductance (G,,) exceeded 1 mS (width (W)/
length (L) =2, V= 0.3 V). These results confirm the viability of the
established material protocols. It is worth mentioning that using a
SEBS substrate with low oxygen permeability is the key to ensuring a
high on/off ratio of the ISOECTs. Details of materials processing are
described in the Methods.
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Fig.2|Materials strategies for the ISOECT. a, lllustration of the ISOECT
structure. b, Chemical structure of the TAP molecules and their use as an
adhesive buffer layer between the elastomeric substrate and PEDOT:PSS.

Insulator _
o &

° 4

50% strain

o

2

OH o

. 0= =

- VKIOH 2
* [_3¢) N\ﬁj\ A
‘ whor TAP
H \/
. ] /\\ A

)
50% strain

2

2

o

=

3

«Q

0% strain
30% strain
50% strain

1 strain

|| strain

lys (nA)

0.4 — T T T T T I
0O 20 40 60 80 100 0 20 40 60 80 100

Strain (%) Time (s)

¢, Scanning electron microscopy images of PEDOT:PSS films with and without
TAP under 50% strain. d-g, Transfer curves, G, and transient responses of the
ISOECT (W =500 pm, L =250 pum) at different strain values (0%-50%).

Scalable fabrication of stretchable OECT array

The established material solutions permit the assembly of
high-performing and robust ISOECT units, but constructing functional
circuits requires high-density device arrays. However, compatibility
issues arise when patterning those stretchable materials with conven-
tional cleanroom techniques designed for rigid silicon electronics. For
example, procedures such as annealing and lift-off of the photoresist
can cause deformation and deterioration of elastomers and gels, affect-
ing alignment, device yield and device-to-device uniformity.

To address the fabrication challenges, we developed amultichan-
nelinkjet-printing-based platform (Supplementary Fig.9). The process
flowtofabricate ISOECT arraysisillustrated in Fig. 3a,b (detailed in the
Methods). First, the ink of TAP was prepared by dissolving itin an etha-
nol/butyl acetate mixture, followed by printing it on the pre-prepared
SEBS substrate as a buffer layer. Next, electrodes (S, D and G) made of
ultrathin Au electrodes (20 nm) and interconnects were patterned
with ashadow mask. Ink of silver nanowires was subsequently printed
on the interconnect region to ensure high conductivity under strain
(Supplementary Fig.10). Alternatively, the stretchable interconnects
and electrodes can also be fabricated by the direct inkjet printing of
composited Au ink, but have to compromise on conductivity (Sup-
plementary Fig.11). Afterwards, filtered ink of PEDOT:PSS was printed
asthe channel (Supplementary Fig.12). Finally, theion-gel electrolyte
was printed to bridge the gate electrode and channel.

The printing resolution achieved 100 um for all the functional
layers, with a high device yield of 95% (Fig. 3c—f). With the established
printing platform, we successfully printed a 10 x 10 ISOECT array
withinal.44 cm?area, sufficient for wearable sensing and computing
applications. The metrics of the device unit, such as the on/off ratio

(>10%), mobility (-0.8 cm?V's™), G, (-1 mS) and stretchability (50%),
were comparable with the reference device (Supplementary Fig. 13).
Minimal device-to-device variations were achieved under different
strain values, benefiting from the high uniformity and reliability of the
printing process (Fig. 3g-j and Supplementary Fig. 14).

Stretchable OECTs for neuromorphic computing
Having determined the materials solutions and fabrication protocols
for ISOECT arrays, we subsequently explored their use as conform-
able, nonlinear and low-power neuromorphic computing hardware. To
exploit the full potential of the ISOECT array, we adopted the reservoir
computing (RC) framework, apromising machine learning algorithm
known for its minimal requirements on computing resources and
ability to operate with small training datasets (Fig. 4a)*. RC utilize
neuron-like nonlinear hardware units in which OECTs excel. Structur-
ally, OECTs resemble three-terminal transistors, where the gate elec-
trodeisanalogous to the presynapse of aneuron, receiving inputionic
signals, whereas the channel between the source and drainelectrodes
isanalogous to a post-synapse, responding to the gate signals’. Opera-
tionally, the signals at the gate electrode propagate through nonlinear
ionic transports via the electrolyte”**, modulating the channel con-
ductance via a nonlinear electrochemical doping/dedoping process
(Supplementary Fig.15)*. Additionally, the inherent stretchability of
ISOECT arrays favours their uses at soft biological interfaces.
Toimplement ISOECT arraysin the RC network, we first evaluated
their potential in distinguishing drain currents (/) as different digital-
ized gate inputs. We began by inputting four-bit pulse streams at the
gate electrode and recording the corresponding output /4 (Fig. 4b),
where ‘1’ denotes applying a gate voltage (0.4 V) and ‘0’ denotes no
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Fig. 3 |Scalable fabrication of the ISOECT array. a, lllustration of the
multichannelinkjet printing of ISOECTs. b, Process flow of ISOECT array
fabrication. c¢,d, Optical images of an ISOECT array containing 1,600 devices at

0% strain (c) and 50% strain (d). Scale bar, 1 cm. e,f, Optical image of ISOECT array
(10 x10) withinanareaof 1.2 cm x 1.2 cm (W= 500 pm, L =100 pm). Scale bar, 1 cm.

g, Transfer curves of ISOECTs for 50 cycles, with V,, fixed at-0.2 Vand V,, scanned
from-0.4t0 0.8 V. h, Output curves of ISOECTs, with V;,scanned from0to-0.8V
and Vi scanned from 0t0 0.8 V.i, Distribution of on-state and off-state currents
of the ISOECT (10 x 10 array). j, Comparison of G, values between devices in the
10 x 10 array, indicating the high reliability of the fabrication process.

voltage is applied (0 V). As expected, when a single pulse was applied
at the gate, /,, exhibited a nonlinear drop. The removal of the pulse
caused /4 to nonlinearly return to its initial value. The application of
multiple pulses led to a steeper drop in /. Importantly, we observed
distinguishable /, values for all the 16 sequential pulse inputs, rang-
ing from ‘0000’ to ‘1111, benefiting from the excellent nonlinearity of
ISOECTs. In other words, ISOECTs could generate 16 distinguishable
analogue /4 values for the corresponding 16 sequential input states
(Fig.4cand Supplementary Figs.16 and 17).

Subsequently, we explored the use of one ISOECT array to clas-
sify digits in an image (Fig. 4d). Each digit is composed of 20 pixels
(black/white) arranged in five rows, with four pixelsin each row. After
converting the black/white pixels into sequential high-/low-voltage
pulses and feeding them to the reservoir (that is, the ISOECT array),
distinguishable /,, patterns were obtained (Fig. 4e,f). These patterns
remained distinguishable under strain (Fig. 4g). We then further veri-
fied the capability of ISOECT for predicting handwritten digits from
the Mixed National Institute of Standards and Technology dataset
(Supplementary Fig.18 and Methods). To facilitate processing, we first

binarized the handwritten characters to a 28 x 28 pixel?image (black/
white), whichwas then convertedintoa4 x 196 array that could be fed
to the ISOECT reservoir. Each neuron of the reservoir was assigned a
temporary I, value of acorresponding ISOECT. The sparse connections
ofthereadout map, whichlink the reservoir layer and the output layer,
were optimized during the training process. Since only the sparse con-
nection in the output layer needs to be trained, the above approach
could significantly reduce data processing costs (Supplementary
Figs.19 and 20).

Tovisualize the distribution of the high-dimensional feature vec-
torsencoded by the ISOECT reservoir, we used a principal component
analysis to reduce them to points in a three-dimensional space. Typi-
cally, samples from the same class form clusters, whereas those from
different classes areisolated (Supplementary Fig. 21). Figure 4h depicts
the results showing that the ISOECT array can achieve a prediction
accuracy of up to 90%, comparable with conventional artificial neu-
ral networks. Remarkably, even after reducing the operating voltage
from400to4 mV (SupplementaryFig.22), ISOECTs werestill capable
of distinguishing the 16 sequential pulse inputs and maintain a high
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Fig. 4 |ISOECT array for neuromorphic computing. a, Schematic of the RC
network. b, /i, response of ISOECT (W=1,000 pum, L =300 pm) corresponding to
differentinput-pulse combinations ranging from ‘0000’ to ‘1111'. ¢, Comparison
of the determined /4 values at 0% and 50% strain. d, Images of the ten digital
numbers for RC validation. e, lllustration of recognizing the digital number 7

(5 x 4 pixels) with an RC circuit comprising five ISOECTs. The white pixel indicates
alow-voltage pulse (0) and the black pixel indicates a high-voltage pulse (1).

f, Opticalimages of the ISOECT reservoir circuits at 0% and 50% strain.

Scale bar,1cm. g, Determined /4 values of ISOECT neurons in the RC circuit on
each digital number (from 0 to 9). h, Prediction results of handwritten digits
using the RC circuit at different strain values (0%, 30% and 50%). i, Evolution of
the prediction accuracy of ISOECT RC within 40 training epochs. Decreasing the
operation voltage (V;,) from 400 to 4 mV canreduce the power consumption
from 36,000 to 36 nW, without amajor compromise on accuracy. j, Overall
comparison of ISOECT with other common hardware used for RC.
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Fig. 5| WISE platform for wearable in-sensor computing. a-c, Optical
images of the WISE platform (a), the ISOECT array (b) and the PERECT control
unit (c). Scale bar, 1 cm. d, lllustration of the structure of the WISE platform.

e, Circuitdiagram of the WISE platform, including a BLE module, an ISOECT
RCarray (W=500 pm, L =150 pm), analogue front ends, an ISOECT sensor
(W=500 pm, L =150 pm) and a MCU. BLE, Bluetooth low energy; DAC, digital-
to-analog converter; ADC, analog-to-digital converter; AMP, amplifier; MUX,
multiplexer; RAM, random-access memory; CPU, central processing unit;
MCU, microcontroller unit; TIA, transimpedance amplifier. f, Process flow for

gesture recognition: (i) preprocessing of EMG signal by sampling witha 640 ms
sliding window and a40 ms stride; (ii) encoding the EMG signals into a stream
of voltage pulses (varying between 0000 and 1111); (iii) applying pulses stream
(as V,,) to ISOECTs and determining /4 readout by using the PERfECT unit,
whichis subsequently assigned to ISOECT neurons for gesture classification
through the fully connected (FC) layer. g, Classification accuracy. h, Evolution
of classification accuracy under 0% and 50% strain. i, Comparison of confusion
matrices under 0% and 50% strain.
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prediction accuracy. The above voltage reduction corresponds to a
significant decrease in power consumption from 36,000 to 36 nW
(Fig. 4i), demonstrating the energy efficiency of an ISOECT RC net-
work. Figure 4j illustrates, in detail, the advantages of ISOECTs over
other technologies. ISOECTs simultaneously achieved low power con-
sumption and mechanical stretchability, an exclusive feature not yet
achieved by other RC hardware units***.,

WISE platform for wearable in-sensor computing
The presented protocols for constructing ISOECT arrays and stretch-
able RC networks open a wide range of applications. As an example,
we demonstrate their use for wearable gesture recognition. To enable
wearable data acquisition, we combined the arrays with our recently
developed coin-sized readout unit, personalized electronic reader
for electrochemical transistors (PERfECT) (Supplementary Fig. 23)*.
The WISE platform uses an ISOECT array for both electromyography
(EMG) sensing (leveraging the high G,,, value of ISOECTs; Supplementary
Fig.24) and datacomputing (Fig. 5a-e). The detailed working process
isillustrated in Fig. 5f. (1) Sensing: ISOECT sensors detect EMG signals
and amplify them at their origin; then, the temporal EMG signals are
sampled using a sliding window with a size of 640 ms and a stride of
40 ms. (2) Encoding: the PERfECT system encodes the analogue EMG
signalsinto four-bit sequential voltage pulse streams to feed the ISOECT
(SupplementaryFig.25). (3) The ISOECT array (4 x 4) analysed the input
EMG signal sequence, implementing in-sensor RC and yielding the
predicted results.

Figure 5g-i demonstrates that the WISE platform can accurately
recognize different gestures from EMG signals, with negligible motion
artefacts owing to the acquired stretchability. Compared with con-
ventional artificial neural networks, the ISOECT RC unit significantly
reduces the memory cost needed for the edge computing of EMG
signals that contain complex temporal and sequential information
(Supplementary Fig.26). The ISOECT EMG sensor consumed an energy
of approximately 0.035 nJ per operation, whereas the ISOECT RC con-
sumed less than 0.56 nJ. The energy consumptionis among the lowest
in existing hardware®**>*+%47_demonstrating the competitiveness
of our platform for practical wearable edge-computing applications.

Conclusions

We have reported anintegrated system for wearable health informatics
thatisbased on ISOECT technologies. To develop our WISE platform, we
firstestablished astandardizable material protocol providing intrinsic
stretchability to OECTs. To facilitate strain dissipation and mechanical
stability, we synthesized an adhesive supramolecular buffer layer (TAP).
Subsequently, we developed amultichannelinkjet printing system (six
channels), providing one-shot and scalable fabrication of ISOECT arrays
with a high yield (>95%) and featured sizes down to 100 um. Finally, a
coin-sized readout unit was developed to provide on-site data process-
ing. Asan example, we showed that the WISE platform can be used for
the in situ signalling and analysis of EMG, offering high prediction
accuracy (-90%) for wearable gesture recognition.

By focusing on a system engineering approach and solving com-
patibility issues between parts of the device, we have been able to show
the potential of ISOECTs in practical on-body wearable applications.
ISOECTs combine low-voltage operation (<1V), high G, and good
mechanical properties, making them advantageous for biosensing,
and their low-cost and scalable fabrication makes them well suited to
wearable applications.

Here we used depletion-mode PEDOT:PSS OECTs due to their
high stability and reliability. However, to deliver lower standby power
and facilitate further scaling, enhancement-mode ISOECTs will be
needed. Thereis also the potential toimprove the frequency response
of ISOECTs. Compared with their rigid counterparts, ISOECTs are
relatively slow due to the use of ion gels with slow ion transport. Our
ISOECTs with achannellength of 100 um can achieve cutofffrequencies

between 107 and 10° Hz, sufficient to cover a range of electrophysi-
ologicalsignals. Furtherimprovementsin frequency response could be
achieved by optimizing the device structure or adjusting the operating
voltages*s*.

Methods

Materials

PEDOT:PSS aqueous suspension (Clevios PH1I000) was purchased from
Heraeus Electronic Material. PAA (average M,,=2,000), PEGDE (average
M,=500),glycerol, dodecylbenzene sulfonicacid (DBSA), sodium chlo-
ride and ammonium persulfate were purchased from Sigma-Aldrich.
SEBS compounds H1221 with poly(ethylene-co-butylene) volume frac-
tions of 88% were provided by Asahi Kasei. Toluene, PAA (average
M, =250,000), zwitterionic monomer 3-dimethyl(methacryloyloxy
ethyl) ammonium propane sulfonate, 2,2-bis(hydroxymethyl)propi-
onic acid (DMPA, 98%), 2,2-dimethoxypropane (DMP, 98%), sodium
chloride (NaCl, 299.5%), sodium bicarbonate (NaHCO,, >99.8%),
N-hydroxysuccinimide (NHS, 98%), N-(3-dimethylaminopropyl)-
N’-ethylcarbodiimide hydrochloride (EDC-HCI, 98.5%), methanol,
dichloromethane (DCM), hydrochloric acid (36%-38%) and acetone
were obtained from Aladdin. Dopamine hydrochloride (DA-HCI, 98%),
polyteramethylene glycol (M, =1,000), dibutyltin dilaurate (95%), tol-
uenesulfonicacid, isophorone diisocyanate, trifluoroacetic acid, dibu-
tyltindilaurate and1,4-butanediol were purchased from Sigma-Aldrich
and dried under a vacuum before use. 1-Ethyl-3-methylimidazolium
ethyl sulfate was obtained from TCI. The ink of silver nanowires
(2-5 pm, 10 mg ml ™) was purchased from Haitai Naxin Technology.
The Auink (JG-125,25 mg ml™) was purchased from Novacentrix.

Preparation of PEDOT:PSS mixtures

PEDOT:PSS aqueous suspension was first stirred for 3 min and then
diluted with water with a 1:1 volume ratio. Then, the diluted mixture
was mixed with glycerol (5 v/v%), GOPS (0.05 v/v%), PEGDE (0.2 v/v%)
and DBSA (0.25 v/v%) with a vortex mixer (MX-S). The dilution process
facilitated the process of inkjet printing and prevented aggregation
onthe print head. The addition of glycerol increases the film conduc-
tivity. DBSA was added to facilitate the wetting property of films on
substrates. GOPS or PEGDE was added to crosslink PEDOT:PSS. Then,
the mixed suspensionwasfiltered with a polytetrafluoroethylene mem-
brane (aperture size, 0.22 pm) to remove aggregates for further use.

Synthesis of TAP
The synthesis of TAP according to previously reported methods™ is
listed below.

i.  Synthesis of DMP-DMPA. DMPA (100 mmol) and DMP
(130 mmol) were dissolved in 100 ml acetone, and then 0.1g
toluenesulfonic acid (0.53 mmol) was added at room tempera-
ture for a4 hreaction. Then, 50 mmol NaHCO, was added to
neutralize the solution and stirred for an additional 20 min; the
residual solid was removed by filtration. Then, the crude prod-
uct was dried and dissolved in DCM. Finally, after drying under
50 °C overnight, DMP-DMPA was obtained.

ii. Synthesis of DMP-DMPA-NHS. DMP-DMPA (50 mmol) and NHS
(60 mmol) were added into a 500 ml single-necked flask, and
dissolved by 200 mlI DCM. Then, EDC-HCI (120 mmol) was add-
ed and stirred for 2.5 h at 0 °C and 20 h at room temperature for
reaction. Then, the crude product was washed with saturated
NaHCO; solution, dilute hydrochloric acid solution and water.
Anhydrous sodium sulfate was used to remove the residue
water in organic phase. After filtration and drying overnight at
60 °Cinavacuum, the white solid product (DMP-DMPA-NHS)
was obtained.

iii. Synthesis of DMP-DMPA-DA. DA-HCI (30 mmol) was added to
a250 ml three-necked flask under a nitrogen atmosphere and
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then dissolved in a mixture of 70 ml DCM and 70 ml methanol.
DMP-DMPA-NHS (20 mmol) was then added for the reaction
and stirred at 0 °C for 20 h. After the solvent evaporation, a
yellow viscous material was obtained. Then, the material was
washed with a dilute hydrochloric acid solution. DMP-DMPA-DA
can then be obtained by collecting the white precipitate and
dried at 50 °C in a vacuum overnight.

iv. Synthesis of DMPA-DA. In a150 ml three-necked flask under
anitrogen atmosphere, 15 mmol DMP-DMPA-DA was added.
Then, 100 ml methanol and 15 mmol trifluoroacetic acid were
added and stirred at room temperature for 16 h. After that, the
crude product was obtained by filtration, and concentrated in
avacuum. Finally, DMPA-DA was obtained by drying at 50 °C
overnightin avacuum.

v. Synthesis of TAP. In a three-necked flask equipped with a
mechanical stirrer under nitrogen, add two molar equivalents
of isophorone diisocyanate and dibutyltin dilaurate. Then,
add one molar equivalent of polyteramethylene glycol and stir
at 75 °C for 3.5 h. DMPA-DA and 1,4-butylene glycol were then
added to the prepolymer and stirred at 85 °C for 4 h. Then, the
reactant was poured into a polytetrafluoroethylene plate and
placed in an oven at 50 °C overnight to complete the reaction.

Synthesis of stretchable gel

First, zwitterionic monomer 3-dimethyl(methacryloyloxyethyl) ammo-
nium propane sulfonate was mixed with an IL (with a molar ratio of
1:1.25) and then initiated by ammonium persulfate (0.2 mol%) in a
PAA aqueous solution. The molar ratio of the monomer units of PAA
and PDMAPS was fixed at 1:1, and the monomer concentration during
polymerizationis 30 wt%. The polymerization proceeded at 80 °C for
6 h under nitrogen protection. In the final samples after being dried,
the molar ratio of PDMAPS, PAA and ILis 1:1:1.25.

Fabrication of the ISOECT array

ForISOECT devices, the stretchable substrate was fabricated by casting
a SEBS solution (10 w/w% in toluene) in a glass Petri dish, followed by
solvent evaporationinafumehood under roomtemperature for 2 days.
Then, the patterning of the functional layer was based on our custom-
ized multichannel inkjet printer. First, the stretchable substrate was
thoroughly cleaned with ethanol and deionized water and completely
dried before the next step. Cleaned substrates were treated with an
ultraviolet-ozone cleaner for 10 min. Immediately after this treat-
ment, a layer of TAP was patterned by inkjet printing the ink (1 w/w%
in EtOH (80%)/butyl acetate (20%) solution), followed by 30 min of
baking at 60 °C to cure the buffer layer. Then, stretchable electrodes
were patterned by vapour deposition of nano Au (20 nm) through an
insitu printed water-soluble shadow mask (PAA; average M,,=2,000),
followed by water development. A firm positioning fixture was cus-
tomized on the printing platform for sample repositioning. In the
area of interconnects, a layer of silver nanowires was printed on top
to guarantee conductivity under strain. After that, PEDOT:PSS was
printed between the S and D electrodes as the channel, followed by
baking at 100 °C for 30 min. Afterwards, alayer of TAP was printed on
theSand D electrodes as insulation to minimize the leakage current. In
the end, the electrolyte was printed to connect the gate and channel.
After curing at room temperature overnight, the architecture of the
OECT canbe completed.

Characterization

Theelectrical performance of the PEDOT:PSS film was measured using
Agilent B2900A controlled with Python software (Windows 64-bit
3.10). The strain test of the film was performed with a tensile machine
(Feinixs, FMSXX 80-50-50). The cracking of the PEDOT:PSS film under
strain was studied with a Nikon optical microscope. For transistor
characterization, the transfer, output and transient responses were

measured with a customized wearable characterization device, that
is, PERFECT. Details can be found in our previous work*.

Simulations

The single fully connected (FC) perceptron layer was used to fit the
weights of the output layer. The cross-entropy loss is minimized by batch
gradient descent using the adaptive momentum estimations (learning
ratio, 0.01) optimizer. The accuracies of the handwriting classification
were obtained as follows: the current flowing through the ISOECT device
inthereservoir at the final time step was used as the input to the output
layer. The cross-entropy loss was minimized by a mini-batch gradient
descent using the Adam optimizer (learning rate, 0.001).

Electrical component

The circuit diagram of PERfECT was designed using open-access
electronic design automation software (LCEDA, Iceda pro-windows-
X64-2.2.27.1). The printed circuitboard (PCB) of PERfECT was fabricated
by acommercial PCB manufacturer (JLCPCB). Allthese electronic and
analytical components were ordered from DigiKey and then integrated
into the PCB. Customized assembly of these units was carried out in
cooperation with SESIC. The circuit was programmed using the Joint
Test Action Group interface, and the circuit firmware was developed
in C language (C11/C18). A multilayer fabrication process was used to
reduce the size of the PCBs. More details about the readout system
can be found in our previous work*. To ensure the sustained and reli-
able operation of the entire system, a rechargeable lithium polymer
battery was used as the power source. The battery was connected to a
low-dropout linear voltage regulator (ADP7112, Analog Devices), which
effectively regulates and supplies a stable voltage output. The local
processing relies on a Bluetooth Low Energy (BLE) system-on-a-chip
(nRF52840-CKAA, Nordic Semiconductor). This multifunctional com-
ponentserves as the Bluetooth communication module and facilitates
the storage and execution of the final output layer of the RC network.
For wireless data transmission, the BLE system-on-a-chip uses a min-
iature ceramic antennaoperating at2.45 GHz.

Then, to implement RC into the wearable gesture recognition
system, the design and deployment of the final FC layer requires careful
considerationsto better balance the computational power consump-
tion and accuracy. To train and obtain the weights inside the FC layer,
pre-collected EMG data were randomly divided into three datasets:
60% for training, 20% for validation and 20% for testing. Considering
the limited data storage space and computational power, the model
parameters were then frozen and quantized, resulting in an eight-bit
network with a reduced size of less than 20 kB. Finally, the quantized
FClayer was transformed into a C array format, enabling compilation
into the system-on-a-chip program.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Datathatsupport the findings of this study are available from the cor-
responding authors upon reasonable request.

Code availability
The code used for RC is available via GitHub at https://github.com/
HKU-WISE-Group/OECT-RC.
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