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Abstract

Solid-state silicon transistors have profoundly transformed modern 
life by enabling a wide array of electronic technologies. The rise 
of bioelectronics has emphasized the necessity for interfacing 
transistors with living systems. However, challenges such as mechanical 
incompatibility, disparities in charge carrier types and differences 
in form factors present significant barriers to seamless integration. 
Recent advances in hydrogels have led to the development of hydrogel 
transistors, which merge the unique properties of hydrogels with 
transistor functionality, offering a solution to overcome these 
mismatches. This Perspective highlights hydrogel transistors, 
their biomimetic features and methods for their fabrication and 
characterization. We envision how hydrogel transistors, by evolving 
from conventional 2D thin-film electronics to 3D gel electronics, expand 
the device toolbox, enabling next-generation 3D, programmable and 
living bioelectronics.
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development roadmap. Next, we explore their fabrication techniques, 
characterization methods and unique form factors. Finally, we envi-
sion how hydrogel transistors, capable of operating at the macroscale 
and cell loading, can start new research directions of 3D programmable 
and living bioelectronics, extending the capability of traditional silicon 
transistors.

Hydrogel transistors
As defined by the International Union of Pure and Applied Chemistry 
(IUPAC), a hydrogel is, first and foremost, a gel — a non-fluid colloidal 
or polymer network that is swollen throughout its entire volume by a 
fluid; and the fluid that swells the polymer network is water58. In the 
context of hydrogel transistors discussed in this Perspective, we mainly 
refer to hydrogels that are used as semiconductor channel materials.

According to the IUPAC definition, organic thin-film transistors, 
including those based on semiconducting molecules or polymers such 
as PEDOT:PSS59, poly(benzimidazobenzophenanthroline):poly(ethylen
eimine)60, poly(benzodifurandione)61 and poly(pyridinium phenylene)19 
can all, technically, be regarded as hydrogel transistors if they swell 
throughout their entire volume in the presence of water. Nevertheless, 
those thin-film devices are typically less than 1-µm-thick and their swell-
ing properties are limited, normally less than 50%, owing to the high 
degree of cross-linking required to achieve the crystallization necessary 
for good semiconducting performance62. Consequently, Young’s modu-
lus ranges from megapascals to gigapascals — much higher than the 
kilopascal-scale modulus of biological systems63,64. So, although these  
organic transistors can generally be categorized as hydrogel transistors, 
they fail to leverage the desired properties of emerging tissue-compliant  
hydrogels (such as kilopascal-scale modulus49, greater thicknesses 
and high stretchability65) and fall short of addressing the multidimen-
sional mismatches with living systems. Accordingly, we define a hydro-
gel transistor as a thick-gel transistor (TGT) in contrast to the thin-film 
transistor (TFT). TFTs are made by depositing thin semiconducting 
layers onto rigid substrates, with planar (surface-to-surface) interfaces 
and micro-scale thicknesses (typically less than 1 µm). TGTs, by contrast, 
are freestanding devices made from soft semiconducting materials 
with a 3D network structure. Their bulk (volume-to-volume) interfaces 
enable efficient 3D charge transport, and their thickness is capable of 
scaling from micro- to macro-scale (exceeding 100 µm, the boundary 
between micro- and macro-scale), allowing seamless integration with 
dynamic living systems.

State-of-the-art hydrogel transistors aim to develop devices 
entirely made of gel materials, with channels featuring hydrogels that 
possess mixed ion–electron conductivity, enabling ion-to-electron con-
version through reversible electrochemical processes. A key objective 
is to achieve kilopascal-scale softness in the semiconductor channel for 
tissue-level compatibility while maintaining substantial channel thick-
nesses to ensure mechanical robustness for free-standing features55,57. 
This requires advanced molecular, polymer and supramolecular pro-
cessing to impart semiconducting properties to macroscopic bulk 
gels, which was previously unattainable until the report of 3D hydrogel 
semiconductors30. One approach involves the deliberate construction 
of 3D micropores within semiconducting polymers to serve as water 
reservoirs66. These reservoirs can greatly enhance the swelling ratio, 
by as much as 1,000%, with excellent reversibility30 — far exceeding the 
capabilities of hydrophilic semiconducting polymers. However, these 
materials are often fragile and lack stretchability. Another strategy 
employs a multi-network supramolecular system, where the semi-
conducting network is complemented with other supporting polymer 

Introduction
The year 2025 marks the 100th anniversary of the transistor. Invented by 
Julius Edgar Lilienfeld in 1925, transistors have become the foundation of 
modern nanoelectronics and microelectronics1,2. In 1947, John Bardeen, 
Walter Brattain and William Shockley demonstrated the Germanium 
point-contact transistor at Bell Laboratories, sparking a period of explo-
sive development3 that included the bipolar junction transistor4,5, the 
metal-oxide–semiconductor field-effect transistor (FET)6, the organic 
FET7,8 and the organic electrochemical transistor (OECT)9,10. These 
transistors laid the foundation for the modern electronics industry, 
enabling functions such as signal amplification11, logic operations12–15 
and artificial intelligence16,17.

Transistors are typically three-terminal semiconductor devices 
containing a gate electrode that modulates the conducting state of 
the semiconductor channel, which is sandwiched between source and 
drain electrodes18. The amplification capabilities of transistors can 
help enhance the signal-to-noise ratio of biosensors11,19 (Fig. 1a). The 
growing bioelectronic need for recording and processing bio-signals 
has propelled the use of transistors to interface living systems and 
improve signal quality20. However, inherent mismatches exist between 
conventional transistors and living systems, such as mechanical mis-
match (hard surface versus soft surface)21–23, charge carrier mismatch 
(electronic signals versus ionic signals)24,25, material mismatch (inor-
ganic material versus organic material)26,27 and dimension mismatch 
(2D versus 3D)28–30. These mismatches have hindered the seamless 
integration of transistors with living systems31,32.

Hydrogels are 3D, wet, soft polymeric materials heavily swollen 
with water33. They are promising biomaterials owing to their ability to 
form an intimate interface with living systems. Their soft, elastic and 
water-abundant nature mimics the mechanical and chemical environ-
ment of biological systems34. For example, the 3D polymer network 
of hydrogels features tunable physico-chemical properties that are 
needed to satisfy the specific requirements for tissue-engineering 
applications33,35. Microfabricated hydrogels have been widely used 
in bioelectronics and medical applications36–39. Hydrogels have also 
been functionalized with conductive components for bioelectronics 
applications. For instance, hydrogel networks have been blended with 
metal nanowires (such as silver and gold40–42), carbon nanotubes43, 
graphene44 and conducting polymers, such as poly(3,4-ethylenediox-
ythiophene) polystyrene sulfonate (PEDOT:PSS)45, polypyrrole46 and 
polyaniline47. The state-of-the-art conductive hydrogels feature con-
ductivities between 102 and 103 S cm–1, while maintaining a tissue-like 
modulus and stretchability48–51.

Although high conductivity is achieved in conductive hydrogels, 
they have lacked semiconducting properties, limiting their use to passive 
applications without amplification or the ability to regulate electron flow 
for logic functions52. To leverage the potential of hydrogels for active 
bio-interfacing, they have been assembled into transistor architectures 
(Fig. 1b). In the early stages, hydrogels were limited to use as supple-
mentary components, such as non-fluid electrolytes18,53,54, to assemble 
transistors. Since then, hydrogel-based semiconductors have been 
developed19,55–57, enabling their direct use as the channel material to cre-
ate true hydrogel transistors for signal processing and amplification. This 
breakthrough also opens opportunities to develop fully hydrogel-based 
transistors for a wide range of bioelectronics applications.

Despite the advances of hydrogel transistors, this field is still in 
its infancy and lacks comprehensive resources to guide newcomers 
to the field. This Perspective highlights hydrogel transistors. We first 
define the different types of hydrogel transistors and outline their 
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networks via non-covalent interactions19,55–57. In this configuration, the 
semiconducting network contributes to the hydrogel’s semiconduct-
ing properties, whereas the supporting polymer network provides 
additional tissue-like properties, such as stretchability, needed for 
compatibility with biological systems.

Hydrogel transistors based on multi-network hydrogel semicon-
ductors have recently achieved notable success in combining a low 
modulus and stretchability55,57 (Fig. 1c). The improved mechanical 
properties are essential for establishing intimate and robust tissue 
interfaces. Additionally, these transistors are able to retain function at 
greater channel thicknesses compared with thin-film semiconductors, 
mainly because, first, the multi-network structure allows more material 

components to be hosted and, second, their micropores contribute to 
a superior swelling capacity30. Therefore, the channel thickness can 
easily be on the scale of micrometres to millimetres, corresponding to 
a macroscopic transistor30, which opens a new technological pathway 
distinct from conventional transistors (Box 1). This unique feature 
provides 3D capacity for cell loading and offers easier manipulation in 
a free-standing form, opening new opportunities for interfacing with 
macroscale biological systems.

The rise of hydrogel transistors
Hydrogel transistors evolved from OECTs9,10, which are considered 
flagship devices in the transdisciplinary field of organic bioelectronics 
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Fig. 1 | Hydrogel transistors provide exclusive opportunities to fill gaps 
between transistors and living systems. a, A hydrogel transistor interfaces 
with a living system with tissue-like softness. It translates ionic biological signals 
into amplified electronic signals. b, Hydrogel transistors have evolved from 
hydrogel-gated transistors (previous generation) to hydrogel semiconductor 
transistors (current generation), and are advancing towards fully hydrogel-based 
transistors (next generation). c, Hydrogel transistors demonstrate a broad 
range of biomimetic properties, such as a low modulus and high stretchability, 
self-healing behaviour, the capacity to support living cells as a living transistor 
and bioadhesiveness. d, Transistor technologies have developed from the early 
anhydrous germanium point-contact transistor to the organic electrochemical 

transistor (OECT), and currently to hydrogel transistors. This progression not 
only marks a shift in material systems and operational environments but also 
reflects a dimensional transformation, with the thickness of the channel evolving 
from nano-scale and micro-scale thin films to the millimetre-scale bulk gels in 
hydrogel transistors, enabling 3D, hydrated and programmable bioelectronic 
interfacing. Major milestones are indicated along the timeline: 1959 (ref. 6), 1965 
(ref. 3), 1984 (ref. 10), 1989 (ref. 128), 2002 (ref. 67), 2006 (ref. 129), 2014 (ref. 130), 
2015 (refs. 112,117), 2016 (ref. 131), 2017 (ref. 53), 2018 (ref. 132), 2020 (ref. 55), 
2022 (refs. 56,69,71), 2024 (refs. 15,19,57) and 2025 (ref. 30). D, drain electrode; 
G, gate electrode; PEDOT:PSS, poly(3,4-ethylenedioxythiophene) polystyrene 
sulfonate; S, source electrode.
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involving organic electronics, electrochemistry and microelectronics 
(Fig. 1d). OECTs are iontronic transistors in which the modulation of 
channel conductance is achieved through ion injection from the electro-
lyte and reversible electrochemical reactions within the semiconducting 
polymer. The first OECT, developed in 1984 (ref. 10), used the conducting 
polymer polypyrrole as the channel material. However, OECTs were not 
widely adopted in bioelectronics until 2002, when the semiconducting 
polymer PEDOT:PSS was introduced as the channel material54,67, which 
greatly improved device stability in both air and water.

Hydrogel transistors were developed as part of the effort to 
create stretchable OECTs53,68, with a particular focus on designing 

low-modulus and stretchable semiconducting polymers for these 
devices. Towards this goal, in 2020, the first hydrogel semiconductor 
with a Young’s modulus as low as 1 kPa was synthesized by mixing a 
PEDOT:PSS suspension with 4-dodecylbenzenesulfonic acid (DBSA)55. 
By optimizing structural and processing controls, efficient ion-to-
electron conversion within the hydrogel was achieved. To further 
enhance the mechanical stretchability of the hydrogel semiconductor 
while maintaining its low modulus, a multi-network polymer approach 
was adopted, blending the π-conjugated PEDOT:PSS hydrogel with a 
secondary stretchable hydrogel network, polyacrylamide (PAAm). 
The resulting hydrogel semiconductor exhibited a modulus range of 

Box 1 | Technology transfer of hydrogel transistors
 

Conventional transistors, which are dry, rigid and non-living, have 
improved computing power by becoming smaller and operating 
within limited 2D spaces. This strategy of miniaturization has enabled 
the packing of more transistors into very large-scale integration 
systems. However, this approach is slowing down as Moore’s law 
reaches its limits133.

In contrast, hydrogel transistors, which are water-rich, soft and 
living, take a complementary approach. They enhance computing 
power without the need for miniaturization. Instead, they overcome 
the dimensional limitations of conventional transistors, enabling 
the integration of electronic devices with biological systems to 
enable 3D and programmable bioelectronics. This ‘More than Moore’ 
strategy134 facilitates the development of brain-inspired intelligent 
systems that, despite being larger in size, remain highly efficient and 
powerful in computational performance.

The figure highlights the evolution of hydrogel transistors and 
their progressive advancements (highlighted by leader line) in 
simultaneously addressing critical mismatches — charge carrier, 

mechanical and dimensional mismatches — on the path towards 
practical bioelectronic integrations.

In 2002, poly(3,4-ethylenedioxythiophene) polystyrene 
sulfonate (PEDOT:PSS)-based organic electrochemical transistors 
(OECTs) introduced mixed ion–electron conduction, enabling 
stable operation of organic transistors in aqueous environments 
and resolving the material and charge carrier mismatch between 
transistors and living systems67. By 2020, the development of 
kilopascal-scale hydrogel OECTs tackled modulus constraints, 
overcoming the modulus and environmental mismatch with 
biological tissues55. Most recently, in 2025, hydrogel OECTs  
broke through thickness limitations with the introduction of  
3D millimetre-thick channel designs, enabling cell loading and 
addressing the dimensional mismatch30.

By overcoming these multidimensional mismatches, hydrogel 
transistors are paving the way for brain-inspired hybrid intelligence 
systems that seamlessly combine the efficiency of electronics with 
the unparalleled capabilities of biological systems.
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1–100 kPa and a stretchability of up to 50%, and by processing it into 
the form of a fibre (Fig. 2a) a hydrogel transistor with an on–off ratio 
of 100 was demonstrated55. This represented the first observation of 
semiconducting behaviour in hydrogels.

Later, the on–off ratio of hydrogel transistors was boosted to 
103 through the controlled synthesis of a double-network hydrogel 
based on PEDOT:PSS and PAAm56. Other hydrogel networks, such as 
poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAAMPSA), were 
explored and a hydrogel transistor array exhibited a similar 103 on–off 
ratio and an average transconductance up to 13 mS (ref. 69). Hydrogel 
transistors using poly(vinyl alcohol) (PVA) and PEDOT:PSS have been 
reported, where Raman spectroscopy analyses indicated that the ionic 
transport through the swollen hydrogel was clearly different from 
the transport in a thin film70. It was later demonstrated that, despite a 
relatively low on–off ratio, it was possible to develop a semiconducting 
hydrogel with only PEDOT:PSS by adding a choline-based ionic liquid 
during processing71.

Other types of hydrogel transistors have also been reported. 
An n-type semiconducting hydrogel was reported based on the 
redox-active and hydrophilic semiconducting polymer, which shows 
good electron mobilities, enabling the fabrication of complementary 
logic circuits and signal amplifiers19. A solvent exchange strategy for 
polymer integration in hydrogels has enabled the incorporation of 
the poly(3,3’-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)2,2’:5’,2”-
terthiophene) (p(g2T-T)) polymer into a hydrogel matrix formed from 
acrylic acid, resulting in a soft, biocompatible material with excellent 
semiconducting performance57 (Fig. 2b,c).

Material strategies for hydrogel transistors
Hydrogel semiconductors are electroactive materials, serving as the 
channel of transistors. They play a central role for signal process-
ing and amplification by enabling mixed ion–electron transport 
and conversion within the hydrogel. Unlike conventional organic 
semiconductors, which are typically composed of a single polymer 

network, hydrogel semiconductors require the integration of mul-
tiple polymer networks, each engineered to perform a specific func-
tion. These networks typically include a semiconducting network, 
a supporting network and additives55,68 (Fig. 3). Achieving optimal 
semiconducting properties requires not only that the concentrations 
of these polymer networks are balanced but also that the processing 
conditions are carefully controlled. Both affect the phase formation 
of the semiconducting network and fine-tuning of the hydrogel’s 
porosity, which are critical for efficient ion and electron transport, 
as well as ion-to-electron conversion30. Finally, the manufacturing 
approach determines the form factor of hydrogel transistors, such as 
films14,72,73, hydrosponges29,74, fibres71 and meshes75, enabling them to 
meet the specific requirements of various bioelectronic applications 
(Fig. 3b).

The following considerations are crucial when developing 
hydrogel semiconductors for hydrogel transistors.

First, it is essential to select an air and water-stable π-conjugated 
polymer network — for example, using redox-active polymers with 
reversible electrochemical reactions, such as PEDOT:PSS, or semicon-
ductor fillers whose conductivity can be modulated electrostatically, 
such as graphene, metal oxides or semi-metallic polymers76. These 
materials should demonstrate stability under various conditions, 
including prolonged exposure to water, air and complex biological 
environments77. Maintaining stability ensures that the semiconduct-
ing polymer retains its functionality during hydrogel assembly and in 
practical applications.

Second, the semiconducting polymer must be capable of form-
ing an independent 3D network. This can be achieved via reversible 
supramolecular interactions, such as π–π stacking, electrostatic 
coupling or non-reversible covalent bonding55,56. Establishing  
a robust 3D semiconducting network ensures its viability across dif-
ferent phases and material forms. This property is a fundamental 
requirement for tissue-like functionality in hydrogels and practical 
applications in bioelectronics.
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Third, the resulting multi-network hydrogels must be capable 
of supporting efficient ion and electron transport, as well as effec-
tive ion-to-electron conversion78–80. These characteristics are essen-
tial for modulating the hydrogel’s redox properties, allowing for 
precise tailoring of its semiconducting performance to suit various 
bioelectronic applications.

Biomimetic features of hydrogel transistors
By harnessing the tissue-like properties of hydrogels, hydrogel tran-
sistors create a seamless interface with living systems33. Integrat-
ing hydrogel-specific attributes into transistors imparts them with 
unprecedented capabilities, including mechanical conformability, 
self-healing, responsiveness to stimuli, actuation and even living 
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functionalities. These biomimetic features effectively bridge the 
gap between traditional transistors and the intricate dynamics of 
biological tissues.

Mechanical conformability
The exceptional mechanical properties of hydrogels, particularly their 
kilopascal-scale low modulus, enhance the mechanical compliance of 
hydrogel transistors. Mechanical conformability refers to a material’s 
ability to adapt or conform to curved or irregular surfaces. It is inversely 
related to bending stiffness — materials with lower bending stiffness are 
more conformable81. The bending stiffness (B) of a material depends 
on its Young’s modulus (E), as given by the following equation82:

B
Eh

ν
=

12(1 − )
,

3

2

where h is the elastic thickness and v is Poisson’s ratio. Transistors 
assembled using materials with a low modulus are more conformable 
because their bending stiffness is reduced.

When a secondary stretchable hydrogel network is introduced, 
to form a double network with the semiconducting network, these 
hydrogel transistors can gain additional stretchability and, hence, 
mechanical robustness without compromising their low modulus65,83,84. 
The combination of mechanical compliance and robustness is essen-
tial for minimizing tissue damage and reducing motion artefacts at 
device–tissue interfaces, ensuring prolonged and reliable integration 
with biological systems.

In addition, hydrogel transistors, benefiting from their greater 
thickness scalability30, adopt diverse form factors that are difficult 
to achieve using conventional thin-film transistors. Their mechani-
cal robustness enables them to exist in free-standing forms, such as 
fibres71, meshes85 or hydrospongel structures29.

Self-healing ability
Hydrogels can endow transistors with self-healing capabilities that 
closely mimic the natural repair processes of biological tissues, thus 
improving their lifespan for prolonged use86. This self-healing ability 
is achieved by introducing dynamic bonds within multi-networked 
hydrogels, and can be designed to be autonomous, without the need 
for external intervention.

Bioadhesiveness
Hydrogels can be designed with unique bioadhesive properties, 
to achieve strong adhesion between transistors and biological 
tissues87,88. Similar to self-healing, improved adhesion can be real-
ized by introducing dynamic bonds within the hydrogel, which then 
form ionic bonds with the ionic species on targeted surfaces44,89. 
Additionally, microstructures can be created to serve as suckers 
or drains to further improve adhesion forces90. These combined 
approaches have been validated to achieve strong underwater 
adhesion91,92, a highly desirable characteristic for interfacing with 
wet biological systems.

A living transistor
The 3D nature of hydrogels and their water-rich composition per-
mit cell loading and proliferation, thereby enhancing the biocom-
patibility of transistors and enabling cell–transistor fusion35. Such 
a ‘living transistor’ can accelerate the development of synthetic 
bioelectronics involving cell–transistor integration29,93, facilitating 

the advancement of various living, wearable and implantable bioel-
ectronic devices and logics. Notably, it may also present new oppor-
tunities to develop biohybrid neuromorphic hardware for computing 
applications94,95.

The ability of hydrogel transistors to achieve a range of channel 
thicknesses — from nanoscale thin films to millimetre-sized structures —  
facilitates cell–transistor integration: with greater channel thicknesses, 
these transistors can support cell growth and proliferation30. Such 
stretchable systems can leverage the programmability of transis-
tors for active control, while also enabling the study of how biome-
chanical forces influence cell behaviour96,97, transistor performance93 
and cell–transistor interactions98,99.

Drug delivery
Hydrogels can provide spatial and temporal control over the release 
of various therapeutic agents, including small-molecule drugs, mac-
romolecular drugs100 and cells33,101. This can be achieved by tuning the 
multiscale properties of hydrogels, the rate of drug diffusion within the 
hydrogel network or the drug–network interactions. Hydrogel tran-
sistors can further advance such systems to be programmable102,103, 
which is essential for precise closed-loop sensing and delivery.

Dynamic actuation
Controllable volumetric expansion or contraction by a safe, low-voltage 
stimuli enables hydrogel transistors to gain programmable actuation 
abilities104. These abilities derive from a reversible electrochemical pro-
cess in semiconducting polymers105,106, enabling hydrogel transistors 
to adapt their shape and conform to complex tissue dynamics107. This 
controllable deformation is particularly valuable in neuro-electronics, 
offering new solutions for minimally invasive, interactive and 
shape-adaptable bioelectronic interfaces.

Characterization of hydrogel transistors
Hydrogel transistors, based on π-conjugated hydrogel semicon-
ductors, operate as three-terminal OECTs9. The state of electronic 
conductivity of the semiconductor channel (electronic circuit), 
sandwiched between source and drain electrodes, is electrochemi-
cally modulated through a gate electrode that controls ion injection 
from the electrolyte (ionic circuit)108 (Fig. 4a). The characteriza-
tion of OECTs — and thus also of hydrogel transistors — includes, 
primarily, characterization of output, transfer, transient response 
and volumetric capacitance.

Output characterization
The hydrogel transistor regulates current flow between the source 
and the drain under varying gate voltage (Vg) conditions. The output 
curves in Fig. 4b show the relationship between the drain current (Id) 
and the drain voltage (Vd) at different Vg. Saturation occurs when Id 
reaches its maximum value for the given Vg and becomes independent 
of Vd, indicating the pinch-off voltage (Vp) of the channel. This test is 
critical for understanding the transistor’s current-driving capability 
and overall output performance.

Theoretical models have been developed to understand the 
operation of OECT devices109. In general, if a differential slice, dx, in 
the vicinity of position x of the channel is considered, then steady-state 
current flux, J(x), follows the governing equation:

J x eμ p
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where Vp is defined as qp0d / cd, e is elementary charge, μelectron is the 
electron (or hole) mobility, p0 is the initial electron (or hole) density 
in the organic semiconductor before the application of Vg, cd is capaci-
tance per unit area and V(x) is the spatial voltage profile. The equation 
can be simplified for different regimes of behaviour following the 
Bernards–Malliaras model109, or the Friedlein–McLeod model110 and 

the Kaphle–Lüssem model111 if considering the dependence of mobility 
on carrier density.

Transfer characterization
Transfer characterization provides crucial insights into the transis-
tor’s switching, amplification and memory behaviour. To understand 

Drain

Gate

Hydrogel channel

Electrolyte

Linear Saturation

O
n–

o�
 ra

tio

Hysteresis

Time

N
or

m
al

iz
ed

 C
 

Thickness

Hydrogel channel SourceDrain

Electronic current
Ionic current
Ion-to-electron 
conversion Slow

Fast

*Same channel thickness

After strain

After strain

Z’
’(Ω

)

Low
fequency

High
frequency

Warburg
impedance

Frequency (Hz)

a b c

d e

fg h

I d
g m

I d
I d

V g

Id

Id

Ig

Vg

Vg

Vd

Vd

I d

VgVd

Vp

Conventional OECT
Hydrogel transistor

Conventional OECT
Hydrogel transistor

Conventional OECT
Hydrogel transistor

Conventional OECT
Hydrogel transistor

Q = ∫ Ig dt
CPEg ZW

CPEdI

Rionic

Relectronic

Z’(Ω)

Source

Rohmic

Fig. 4 | Characterization of hydrogel transistors. a, Hydrogel transistors 
operate in the three-terminal configuration (source, drain and gate electrodes). 
The flow of electrons through the hydrogel semiconductor channel is modulated 
by ionic currents from the gate. This ion-to-electron conversion enables the 
transistor to amplify ionic signals, effectively converting small ionic inputs  
into larger electronic outputs. b, Output curves. The hydrogel transistor  
can obtain higher current due to its increased thickness. c, Transfer curves.  
The hydrogel transistors can maintain their transfer characteristics even  
under strain, benefiting from their combined low modulus and stretchability.  
d, Transient curves. Hydrogel transistors, under the same channel thickness,  
can respond faster due to their porous structure, which facilitates ion transport. 
e, The hydrogel semiconductor channel can maintain the capacitance–thickness 

linearity at greater thickness, benefiting from the facilitated ion transport.  
f,g, The ionic and electronic transport properties in hydrogel semiconductors 
can be evaluated with electrochemical impedance spectroscopy (f) and fitting 
the data to equivalent circuits (g). h, The ion-to-electron conversion efficiency 
can be evaluated by analysing the proportionality between transconductance 
(gm) and the injected ionic charge from the gate (Q); failing to maintain 
the proportionality may indicate deteriorated conversion. C, capacitance; 
CPEdl, double-layer capacitive phase element; CPEg, geometric capacitive phase 
element; Id, drain current; Ig, gate current; OECT, organic electrochemical 
transistor; Relectronic, electronic resistance; Rionic, ionic resistance; Rohmic, ohmic 
resistance; Vd, drain voltage; Vg, gate voltage; Vp, pinch-off voltage; Z′, real part  
of the impedance; Z″, imaginary part of the impedance; Zw, Warburg impedance.
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transistor switching behaviour — such as the on–off ratio — it is critical 
to assess how effectively Vg controls the current flow in the hydrogel 
channel. The transfer curves in Fig. 4c show the relationship between 
Id and Vg at a fixed Vd. By sweeping Vg, the transistor’s on–off ratio and 
threshold voltage can be obtained109,112. Transfer curves are also critical 
for evaluating transconductance (gm), which measures the amplifica-
tion capability of the transistor; gm is extracted from the transfer curve 
using the following equation113:

g
I

V
=

∂
∂

.m
d

g

A high transconductance indicates efficient gate modulation of 
the channel current, and is essential for amplification applications.

The hysteresis in the transfer curve (Fig. 4c) reflects the memory 
effects of the transistor, where the current response depends on the 
history of the applied Vg (refs. 114,115). This is particularly relevant for 
neuromorphic and memory-related applications16,32.

Transient characterization
Transient characterization provides insight into the dynamic per-
formance of the hydrogel transistor, evaluating the transistor’s 
frequency response and neuromorphic behaviour16,116. Figure 4d 
shows the time-dependent response of Id to changes in Vg. Short-term 
responses reflect the switching speed109, whereas long-term responses 
indicate memory or adaptation capabilities in neuromorphic 
applications116. This test is critical for understanding how quickly 
a hydrogel transistor can respond to input signals and for mim-
icking biological processes, making it essential for wearable and 
bioelectronics applications32.

Volumetric capacitance characterization
The ability of the hydrogel channel to modulate charge throughout 
its thickness is critical for maintaining bulk transport, and the per-
formance of hydrogel transistors with varying channel dimensions 
must be understood to ensure their effective operation in bioel-
ectronic systems. The volumetric capacitance evaluates the chan-
nel’s thickness limit, below which capacitance (C) maintains a linear 
relationship with channel thickness117,118 (Fig. 4e). This capacitance 
can be measured using electrochemical impedance spectroscopy119 
(Fig. 4f), with values extractable via a Randles equivalent circuit120 
and its variants49 (Fig. 4g).

Ions, electrons and ion-to-electron conversion
A quantitative measure of ion and electron transport in the hydrogel 
channel is required to gain insight into the hydrogel transistor’s elec-
trical performance. In ionic conductors, the charge carriers are ions —  
either negatively charged anions or positively charged cations. The 
hydrogel usually forms a porous structure where the diffusion coef-
ficient of ions is smaller than the diffusion coefficient for the same ion 
in water. It needs to be adjusted for the size and topography of the pores 
as given by:

D D
ε
τ

= ,0

where D is the diffusion coefficient in a porous network, D0 is the dif-
fusion coefficient in liquid, ε is porosity and τ is tortuosity121,122. Ionic 
mobility (µion) is the drift velocity of an ion per unit electric field. The 
Einstein–Smoluchowski equation is widely used to infer µion from the 
ionic diffusion coefficient:

μ
k T

=
qD

,ion
B

where µion is dependent on the charge of the ion (q), diffusion coefficient 
(D), Boltzmann constant (kB) and temperature of the system (T). The 
conductivity (σion) of an ionic conductor is the sum of the contributions 
from all charge carriers, as expressed by the following equation123:

∑σ n z eμ= ,
i

i iion ion

where σion is contributed by each mobile ion species (i). For the ith ion, 
zi is the absolute value of the charge and ni is the charge carrier density. 
According this equation, the σion value of a hydrogel depends on both 
the properties of the ionic conductor, such as the charge carrier density, 
and the properties of the charged species, such as their mobility. The 
assumption is that a hydrogel will be charge neutral, so a fixed charge in 
the polymer backbone will result in the same amount of mobile charge 
that can contribute to the ionic conductivity123.

The µelectron value can be obtained through transfer characteri-
zation109, transient characterization109, electrochemical imped-
ance spectroscopy112 and small-signal analysis124. According to the 
Bernards–Malliaras model109, µelectron of a hydrogel semiconductor 
can be evaluated by fitting the transient response of Id to a constant 
gate current (Ig):
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where a pulse of Ig injects cations, causing a linear change of Id propor-
tional to the transit time (τe) of carriers across a channel of length L. I0 is 
the steady-state current baseline, and f is the fraction of Ig that preferen-
tially flows to the drain (as determined by the relative electrochemical 
state of the source and the drain).

The ion-to-electron conversion efficiency is an exclusive property 
of hydrogel semiconductors over conventional hydrogels, determining 
their transistor performance30. The conversion efficiency can be evalu-
ated through the fundamental characterizations mentioned above. 
In the steady state, ion-to-electron conversion can be assessed by 
measuring the on–off ratio of hydrogel transistors, where a high on–off 
ratio indicates efficient conversion. In dynamic, frequency-dependent 
states, conversion efficiency can be evaluated from the response 
time derived from transient curves, the transconductance, or the 
subthreshold swing from transfer characteristics, which collectively 
reflect dynamic ion-to-electron conversion.

The dynamic conversion efficiency can be further evaluated by 
analysing the relationship between the injected ionic charge from the 
gate (Q) and gm (Fig. 4h). For example, in an OECT, Q exhibits similar 
behaviour to gm, given by the following equation113:

∫g Q I t∝ = d ,m g
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where the Q is calculated by integrating Ig over time (dt). The above 
equation signifies that the frequency response of the transistor is 
dominated by the ion transport process between the electrolyte 
and the channel. This agreement between gm and Q occurs because 
Id is proportional to the ionic charge injected into the channel. The 
modulation of Vg leads to a modulation of this charge, and hence gm is 
proportional to Q. Failure to maintain proportionality, or decreased 
proportionality, indicates a deterioration in conversion efficiency of 
the hydrogel transistor. Quantitatively, the ion-to-electron conversion 
efficiency can be determined by extracting the redox capacitance from 
the total measured volumetric capacitance using Dunn’s method125–127.

Conclusion and outlook
We have highlighted the rise of hydrogel transistors as a promising solu-
tion to address the longstanding mismatches between conventional 
transistors and living systems. By leveraging biomimetic features of 
hydrogels, including low modulus, stretchability, biocompatibility 
and the ability to function in hydrated environments, these devices 
overcome the mechanical, structural and functional limitations of tra-
ditional inorganic or organic transistors. Their ability to operate at 3D 
macroscopic scales, combined with low-cost and scalable fabrication 

techniques, positions them as a transformative technology to enable 
3D programmable and living bioelectronics (Box 2).

We have discussed critical advances in materials design, fabrica-
tion strategies and device optimization, which provide a foundation for 
the development of hydrogel-based transistors capable of seamlessly 
interfacing with biological systems. Challenges remain in material 
development, fabrication and characterization, and these must be 
addressed to fully realize the potential of hydrogel transistors for broad 
bioelectronic applications.

Developing multifunctional semiconducting hydrogels with 
robust mechanical properties, excellent ion-to-electron conversion, 
and resilience under complex biological and environmental conditions 
remains a priority. Future research should focus on designing advanced 
polymer networks, integrating hierarchical structures, and exploring 
strategies to enhance response speed and stability without compromis-
ing tissue compatibility. Although low-cost and scalable manufacturing 
methods such as printing have proven effective, achieving precise 
control over device architecture, response speed and hysteresis at 
larger scales requires further refinement.

Co-optimization of materials, fabrication processes and opera-
tion mechanisms will be essential to meet the diverse demands of 

Box 2 | Manufacturing of hydrogel transistors
 

The fabrication of conventional transistors relies heavily on 
high-cost and complex techniques to achieve functionality. 
Processes such as photolithography, including extreme ultraviolet 
(EUV) lithography135, are fundamental for producing traditional 
nano-transistors and micro-transistors such as complementary 
metal-oxide-semiconductor (CMOS)-based field-effect transistors 
(FETs), electrolyte-gated FETs18 and electrochemical transistors 
(ECTs)9,136 (see the figure). These methods require extreme precision 
and significant financial investment, which limits accessibility and 
scalability.

Hydrogel transistors overcome these limitations by maintaining 
semiconductor properties and functionalities even at greater 

thicknesses and in bulk forms. This is made possible by the 
dimensional breakthrough of hydrogel semiconductors, which can 
function effectively at sizes and thicknesses previously restricted to 
thin-film semiconductors. This inherent advantage enables hydrogel 
transistors to be fabricated using more accessible and low-resolution 
techniques — such as textile manufacturing137–139 and printing140–143 —  
bypassing the need for complex and expensive microfabrication 
processes.

This shift in fabrication not only reduces costs but also 
significantly simplifies scalable production, positioning hydrogel 
transistors as a transformative technology for widespread 
commercialization and diverse applications.
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bioelectronic applications. Realizing the full potential of hydrogel 
transistors will require the development of operando characterization 
platforms capable of monitoring multiple parameters simultane-
ously under biologically relevant conditions. These platforms will 
provide deeper insights into the fundamental mechanisms of hydrogel 
transistor operation and inform future device design.

Looking ahead, hydrogel transistors provide unprecedented oppor-
tunities in emerging fields relevant to 3D, synthetic, programmable 
and living bioelectronics. For example, in tissue-integrated biosensing, 
they offer the ability to create tissue-conformable active biosensors for 
real-time health monitoring and disease diagnosis. In biohybrid systems, 
they enable direct integration with cells and tissues, paving the way for 
developing hybrid biocomputing platforms and bioelectronic devices, 
such as brain–machine interfaces and artificial intelligence-embedded 
wearables. Furthermore, their adaptability in mimicking biological func-
tions positions them as foundational components for developing biohy-
brid neuromorphic hardware for bio-integrated artificial intelligence, 
where electronics and biology merge to create intelligent, living systems.

Published online: xx xx xxxx
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