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Abstract

Sections

Solid-state silicon transistors have profoundly transformed modern

life by enabling a wide array of electronic technologies. Therise

of bioelectronics has emphasized the necessity for interfacing
transistors with living systems. However, challenges such as mechanical
incompatibility, disparities in charge carrier types and differences
inform factors present significant barriers to seamless integration.
Recent advancesin hydrogels have led to the development of hydrogel
transistors, which merge the unique properties of hydrogels with
transistor functionality, offering a solution to overcome these
mismatches. This Perspective highlights hydrogel transistors,

their biomimetic features and methods for their fabrication and
characterization. We envision how hydrogel transistors, by evolving
from conventional 2D thin-film electronics to 3D gel electronics, expand
the device toolbox, enabling next-generation 3D, programmable and
living bioelectronics.
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Perspective

Introduction

Theyear 2025 marks the100th anniversary of the transistor. Invented by
JuliusEdgar Lilienfeld in1925, transistors have become the foundation of
modernnanoelectronics and microelectronics'.In1947,John Bardeen,
Walter Brattain and William Shockley demonstrated the Germanium
point-contact transistor at Bell Laboratories, sparking a period of explo-
sive development® that included the bipolar junction transistor*’, the
metal-oxide-semiconductor field-effect transistor (FET)®, the organic
FET”® and the organic electrochemical transistor (OECT)"'°. These
transistors laid the foundation for the modern electronics industry,
enabling functions such as signal amplification®, logic operations'> ™
and artificial intelligence'®".

Transistors are typically three-terminal semiconductor devices
containing a gate electrode that modulates the conducting state of
the semiconductor channel, whichis sandwiched between source and
drain electrodes'®. The amplification capabilities of transistors can
help enhance the signal-to-noise ratio of biosensors™" (Fig. 1a). The
growing bioelectronic need for recording and processing bio-signals
has propelled the use of transistors to interface living systems and
improve signal quality®. However, inherent mismatches exist between
conventional transistors and living systems, such as mechanical mis-
match (hard surface versus soft surface)” >, charge carrier mismatch
(electronic signals versus ionic signals)***, material mismatch (inor-
ganic material versus organic material)***” and dimension mismatch
(2D versus 3D)**7%°, These mismatches have hindered the seamless
integration of transistors with living systems®*,

Hydrogels are 3D, wet, soft polymeric materials heavily swollen
with water®, They are promising biomaterials owing to their ability to
form an intimate interface with living systems. Their soft, elastic and
water-abundant nature mimics the mechanical and chemical environ-
ment of biological systems**. For example, the 3D polymer network
of hydrogels features tunable physico-chemical properties that are
needed to satisfy the specific requirements for tissue-engineering
applications®?*. Microfabricated hydrogels have been widely used
in bioelectronics and medical applications®*’, Hydrogels have also
been functionalized with conductive components for bioelectronics
applications. For instance, hydrogel networks have been blended with
metal nanowires (such as silver and gold*°~*?), carbon nanotubes®,
graphene** and conducting polymers, suchas poly(3,4-ethylenediox-
ythiophene) polystyrene sulfonate (PEDOT:PSS)*, polypyrrole*® and
polyaniline”. The state-of-the-art conductive hydrogels feature con-
ductivities between 10*and 10* S cm™, while maintaining a tissue-like
modulus and stretchability*s™.

Although high conductivity is achieved in conductive hydrogels,
they have lacked semiconducting properties, limiting their use to passive
applications without amplification or the ability to regulate electron flow
for logic functions™. To leverage the potential of hydrogels for active
bio-interfacing, they have beenassembled into transistor architectures
(Fig. 1b). In the early stages, hydrogels were limited to use as supple-
mentary components, such as non-fluid electrolytes'®*>**, to assemble
transistors. Since then, hydrogel-based semiconductors have been
developed”>~, enabling their direct use as the channel material to cre-
atetrue hydrogel transistors for signal processing and amplification. This
breakthroughalso opens opportunities to develop fully hydrogel-based
transistors for awide range of bioelectronics applications.

Despite the advances of hydrogel transistors, this field is still in
its infancy and lacks comprehensive resources to guide newcomers
to the field. This Perspective highlights hydrogel transistors. We first
define the different types of hydrogel transistors and outline their

developmentroadmap. Next, we explore their fabrication techniques,
characterization methods and unique form factors. Finally, we envi-
sion how hydrogel transistors, capable of operating at the macroscale
and cellloading, can start new research directions of 3D programmable
and living bioelectronics, extending the capability of traditional silicon
transistors.

Hydrogel transistors

As defined by the International Union of Pure and Applied Chemistry
(IUPAC), ahydrogelis, first and foremost, a gel — a non-fluid colloidal
or polymer network that is swollen throughout its entire volume by a
fluid; and the fluid that swells the polymer network is water*®. In the
context of hydrogel transistors discussed in this Perspective, we mainly
refer to hydrogels that are used as semiconductor channel materials.

According to the IUPAC definition, organic thin-film transistors,
including those based on semiconducting molecules or polymers such
as PEDOT:PSS*, poly(benzimidazobenzophenanthroline):poly(ethylen
eimine)®’, poly(benzodifurandione)® and poly(pyridinium phenylene)”
can all, technically, be regarded as hydrogel transistors if they swell
throughout their entire volume in the presence of water. Nevertheless,
those thin-film devices are typically less than1-um-thick and their swell-
ing properties are limited, normally less than 50%, owing to the high
degree of cross-linking required to achieve the crystallization necessary
for good semiconducting performance®. Consequently, Young’s modu-
lus ranges from megapascals to gigapascals — much higher than the
kilopascal-scale modulus of biological systems®***. So, although these
organictransistors cangenerally be categorized as hydrogel transistors,
theyfail toleverage the desired properties of emerging tissue-compliant
hydrogels (such as kilopascal-scale modulus*’, greater thicknesses
and high stretchability®®) and fall short of addressing the multidimen-
sional mismatches with living systems. Accordingly, we define ahydro-
geltransistor asathick-gel transistor (TGT) in contrast to the thin-film
transistor (TFT). TFTs are made by depositing thin semiconducting
layersontorigid substrates, with planar (surface-to-surface) interfaces
and micro-scale thicknesses (typically lessthan1pum). TGTs, by contrast,
are freestanding devices made from soft semiconducting materials
witha3D network structure. Their bulk (volume-to-volume) interfaces
enable efficient 3D charge transport, and their thickness is capable of
scaling from micro- to macro-scale (exceeding 100 pm, the boundary
between micro- and macro-scale), allowing seamless integration with
dynamic living systems.

State-of-the-art hydrogel transistors aim to develop devices
entirely made of gel materials, with channels featuring hydrogels that
possess mixedion-electron conductivity, enablingion-to-electron con-
versionthroughreversible electrochemical processes. A key objective
istoachievekilopascal-scale softness in the semiconductor channel for
tissue-level compatibility while maintaining substantial channel thick-
nesses to ensure mechanical robustness for free-standing features®".
Thisrequires advanced molecular, polymer and supramolecular pro-
cessing to impart semiconducting properties to macroscopic bulk
gels, whichwas previously unattainable until the report of 3D hydrogel
semiconductors®. One approachinvolves the deliberate construction
of 3D micropores within semiconducting polymers to serve as water
reservoirs®. These reservoirs can greatly enhance the swelling ratio,
by asmuch as1,000%, with excellent reversibility*® — far exceeding the
capabilities of hydrophilic semiconducting polymers. However, these
materials are often fragile and lack stretchability. Another strategy
employs a multi-network supramolecular system, where the semi-
conducting network is complemented with other supporting polymer
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Fig.1|Hydrogel transistors provide exclusive opportunities to fill gaps
between transistors and living systems. a, A hydrogel transistor interfaces
with aliving system with tissue-like softness. It translates ionic biological signals
into amplified electronic signals. b, Hydrogel transistors have evolved from
hydrogel-gated transistors (previous generation) to hydrogel semiconductor
transistors (current generation), and are advancing towards fully hydrogel-based
transistors (next generation). ¢, Hydrogel transistors demonstrate a broad
range of biomimetic properties, such as alow modulus and high stretchability,
self-healing behaviour, the capacity to support living cells as a living transistor
and bioadhesiveness. d, Transistor technologies have developed from the early
anhydrous germanium point-contact transistor to the organic electrochemical

transistor (OECT), and currently to hydrogel transistors. This progression not
only marks a shift in material systems and operational environments but also
reflects adimensional transformation, with the thickness of the channel evolving
from nano-scale and micro-scale thin films to the millimetre-scale bulk gelsin
hydrogel transistors, enabling 3D, hydrated and programmable bioelectronic
interfacing. Major milestones are indicated along the timeline: 1959 (ref. 6),1965
(ref.3),1984 (ref.10),1989 (ref. 128), 2002 (ref. 67), 2006 (ref.129), 2014 (ref. 130),
2015 (refs.112,117), 2016 (ref. 131), 2017 (ref. 53), 2018 (ref. 132),2020 (ref. 55),
2022 (refs. 56,69,71), 2024 (refs. 15,19,57) and 2025 (ref. 30). D, drain electrode;

G, gate electrode; PEDOT:PSS, poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate; S, source electrode.

networks vianon-covalentinteractions'>*’. In this configuration, the
semiconducting network contributes to the hydrogel’s semiconduct-
ing properties, whereas the supporting polymer network provides
additional tissue-like properties, such as stretchability, needed for
compatibility with biological systems.

Hydrogel transistors based on multi-network hydrogel semicon-
ductors have recently achieved notable success in combining a low
modulus and stretchability®*’ (Fig. 1c). The improved mechanical
properties are essential for establishing intimate and robust tissue
interfaces. Additionally, these transistors are able toretain functionat
greater channel thicknesses compared with thin-film semiconductors,
mainly because, first, the multi-network structure allows more material

componentsto be hosted and, second, their micropores contribute to
a superior swelling capacity®. Therefore, the channel thickness can
easily be onthescale of micrometres to millimetres, corresponding to
amacroscopic transistor®°, which opens a new technological pathway
distinct from conventional transistors (Box 1). This unique feature
provides 3D capacity for cell loading and offers easier manipulationin
afree-standing form, opening new opportunities for interfacing with
macroscale biological systems.

Therise of hydrogel transistors
Hydrogel transistors evolved from OECTs”'°, which are considered
flagship devicesin the transdisciplinary field of organic bioelectronics
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Box 1| Technology transfer of hydrogel transistors

Conventional transistors, which are dry, rigid and non-living, have
improved computing power by becoming smaller and operating
within limited 2D spaces. This strategy of miniaturization has enabled
the packing of more transistors into very large-scale integration
systems. However, this approach is slowing down as Moore's law
reaches its limits'®.

In contrast, hydrogel transistors, which are water-rich, soft and
living, take a complementary approach. They enhance computing
power without the need for miniaturization. Instead, they overcome
the dimensional limitations of conventional transistors, enabling
the integration of electronic devices with biological systems to
enable 3D and programmable bioelectronics. This ‘More than Moore’
strategy'* facilitates the development of brain-inspired intelligent
systems that, despite being larger in size, remain highly efficient and
powerful in computational performance.

The figure highlights the evolution of hydrogel transistors and
their progressive advancements (highlighted by leader line) in
simultaneously addressing critical mismatches — charge carrier,

mechanical and dimensional mismatches — on the path towards
practical bioelectronic integrations.

In 2002, poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate (PEDOT:PSS)-based organic electrochemical transistors
(OECTs) introduced mixed ion-electron conduction, enabling
stable operation of organic transistors in aqueous environments
and resolving the material and charge carrier mismatch between
transistors and living systems®’. By 2020, the development of
kilopascal-scale hydrogel OECTs tackled modulus constraints,
overcoming the modulus and environmental mismatch with
biological tissues®. Most recently, in 2025, hydrogel OECTs
broke through thickness limitations with the introduction of
3D millimetre-thick channel designs, enabling cell loading and
addressing the dimensional mismatch®.

By overcoming these multidimensional mismatches, hydrogel
transistors are paving the way for brain-inspired hybrid intelligence
systems that seamlessly combine the efficiency of electronics with
the unparalleled capabilities of biological systems.
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involving organic electronics, electrochemistry and microelectronics
(Fig. 1d). OECTs are iontronic transistors in which the modulation of
channel conductanceis achieved throughioninjectionfromtheelectro-
lyteandreversible electrochemical reactions within the semiconducting
polymer. Thefirst OECT, developed in 1984 (ref.10), used the conducting
polymer polypyrrole as the channel material. However, OECTs were not
widely adoptedinbioelectronics until2002, when the semiconducting
polymer PEDOT:PSS was introduced as the channel material***’, which
greatly improved device stability in both air and water.

Hydrogel transistors were developed as part of the effort to
create stretchable OECTs***®, with a particular focus on designing

Polymer Supermolecule

Hydrogel transistor

low-modulus and stretchable semiconducting polymers for these
devices. Towards this goal, in 2020, the first hydrogel semiconductor
with a Young’s modulus as low as 1 kPa was synthesized by mixing a
PEDOT:PSS suspension with 4-dodecylbenzenesulfonic acid (DBSA)*.
By optimizing structural and processing controls, efficient ion-to-
electron conversion within the hydrogel was achieved. To further
enhance the mechanical stretchability of the hydrogel semiconductor
while maintainingits low modulus, amulti-network polymer approach
was adopted, blending the t-conjugated PEDOT:PSS hydrogel with a
secondary stretchable hydrogel network, polyacrylamide (PAAm).
The resulting hydrogel semiconductor exhibited a modulus range of
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1-100 kPa and a stretchability of up to 50%, and by processing it into
the form of a fibre (Fig. 2a) a hydrogel transistor with an on-off ratio
of 100 was demonstrated®. This represented the first observation of
semiconducting behaviour in hydrogels.

Later, the on-off ratio of hydrogel transistors was boosted to
10° through the controlled synthesis of a double-network hydrogel
based on PEDOT:PSS and PAAmM*. Other hydrogel networks, such as
poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAAMPSA), were
explored and a hydrogel transistor array exhibited a similar 10* on-off
ratio and an average transconductance up to 13 mS (ref. 69). Hydrogel
transistors using poly(vinyl alcohol) (PVA) and PEDOT:PSS have been
reported, where Raman spectroscopy analysesindicated that theionic
transport through the swollen hydrogel was clearly different from
the transport in a thin film’°. It was later demonstrated that, despite a
relatively low on-off'ratio, it was possible to develop asemiconducting
hydrogel with only PEDOT:PSS by adding a choline-based ionic liquid
during processing’’.

Other types of hydrogel transistors have also been reported.
An n-type semiconducting hydrogel was reported based on the
redox-active and hydrophilic semiconducting polymer, which shows
good electron mobilities, enabling the fabrication of complementary
logic circuits and signal amplifiers'. A solvent exchange strategy for
polymer integration in hydrogels has enabled the incorporation of
the poly(3,3’-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)2,2":5,2"-
terthiophene) (p(g2T-T)) polymerinto a hydrogel matrix formed from
acrylicacid, resulting in a soft, biocompatible material with excellent
semiconducting performance® (Fig. 2b,c).

Material strategies for hydrogel transistors

Hydrogel semiconductors are electroactive materials, serving as the
channel of transistors. They play a central role for signal process-
ing and amplification by enabling mixed ion-electron transport
and conversion within the hydrogel. Unlike conventional organic
semiconductors, which are typically composed of a single polymer

network, hydrogel semiconductors require the integration of mul-
tiple polymer networks, each engineered to performaspecific func-
tion. These networks typically include a semiconducting network,
a supporting network and additives®*® (Fig. 3). Achieving optimal
semiconducting properties requires not only that the concentrations
of these polymer networks are balanced but also that the processing
conditions are carefully controlled. Both affect the phase formation
of the semiconducting network and fine-tuning of the hydrogel’s
porosity, which are critical for efficiention and electron transport,
as well as ion-to-electron conversion®. Finally, the manufacturing
approach determines the form factor of hydrogel transistors, such as
films'*">7, hydrosponges®*’, fibres”' and meshes”, enabling them to
meet the specific requirements of various bioelectronic applications
(Fig. 3b).

The following considerations are crucial when developing
hydrogel semiconductors for hydrogel transistors.

First, itis essential to select an air and water-stable mi-conjugated
polymer network — for example, using redox-active polymers with
reversible electrochemical reactions, such as PEDOT:PSS, or semicon-
ductor fillers whose conductivity can be modulated electrostatically,
such as graphene, metal oxides or semi-metallic polymers™. These
materials should demonstrate stability under various conditions,
including prolonged exposure to water, air and complex biological
environments”’. Maintaining stability ensures that the semiconduct-
ing polymer retainsits functionality during hydrogel assembly and in
practical applications.

Second, the semiconducting polymer must be capable of form-
ing an independent 3D network. This can be achieved via reversible
supramolecular interactions, such as - stacking, electrostatic
coupling or non-reversible covalent bonding®*¢. Establishing
arobust 3D semiconducting network ensures its viability across dif-
ferent phases and material forms. This property is a fundamental
requirement for tissue-like functionality in hydrogels and practical
applicationsinbioelectronics.
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ethoxy)ethoxy)2,2":5,2"-terthiophene) (p(g2T-T)). The supporting networks such
as polyacrylamide (PAAm) impart hydrogel with mechanical properties such

as softness and stretchability. Additives are incorporated to tune the physico-
chemical properties of the hydrogel, for example, DMSO can be used to enhance
the electronic conductivity of PEDOT:PSS.

Third, the resulting multi-network hydrogels must be capable
of supporting efficient ion and electron transport, as well as effec-
tive ion-to-electron conversion’*°, These characteristics are essen-
tial for modulating the hydrogel’s redox properties, allowing for
precise tailoring of its semiconducting performance to suit various
bioelectronic applications.

Biomimetic features of hydrogel transistors

By harnessing the tissue-like properties of hydrogels, hydrogel tran-
sistors create a seamless interface with living systems™. Integrat-
ing hydrogel-specific attributes into transistors imparts them with
unprecedented capabilities, including mechanical conformability,
self-healing, responsiveness to stimuli, actuation and even living
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functionalities. These biomimetic features effectively bridge the
gap between traditional transistors and the intricate dynamics of
biological tissues.

Mechanical conformability

The exceptional mechanical properties of hydrogels, particularly their
kilopascal-scale low modulus, enhance the mechanical compliance of
hydrogel transistors. Mechanical conformability refers to a material’s
ability toadaptor conformto curved orirregular surfaces. Itisinversely
related to bending stiffness — materials with lower bending stiffness are
more conformable®. The bending stiffness (B) of a material depends
onits Young’s modulus (£), as given by the following equation®*:

3
po E
12(1-v?)

where h is the elastic thickness and v is Poisson’s ratio. Transistors
assembled using materials withalow modulus are more conformable
because their bending stiffness is reduced.

When a secondary stretchable hydrogel network is introduced,
to form a double network with the semiconducting network, these
hydrogel transistors can gain additional stretchability and, hence,
mechanical robustness without compromising their low modulus®***,
The combination of mechanical compliance and robustness is essen-
tial for minimizing tissue damage and reducing motion artefacts at
device-tissueinterfaces, ensuring prolonged and reliableintegration
with biological systems.

In addition, hydrogel transistors, benefiting from their greater
thickness scalability®®, adopt diverse form factors that are difficult
to achieve using conventional thin-film transistors. Their mechani-
cal robustness enables them to exist in free-standing forms, such as
fibres”’, meshes® or hydrospongel structures®.

Self-healing ability

Hydrogels can endow transistors with self-healing capabilities that
closely mimic the natural repair processes of biological tissues, thus
improving their lifespan for prolonged use®. This self-healing ability
is achieved by introducing dynamic bonds within multi-networked
hydrogels, and can be designed to be autonomous, without the need
for external intervention.

Bioadhesiveness

Hydrogels can be designed with unique bioadhesive properties,
to achieve strong adhesion between transistors and biological
tissues®”, Similar to self-healing, improved adhesion can be real-
ized by introducing dynamic bonds within the hydrogel, which then
form ionic bonds with the ionic species on targeted surfaces***’.
Additionally, microstructures can be created to serve as suckers
or drains to further improve adhesion forces’. These combined
approaches have been validated to achieve strong underwater
adhesion”?, a highly desirable characteristic for interfacing with
wet biological systems.

Aliving transistor

The 3D nature of hydrogels and their water-rich composition per-
mit cell loading and proliferation, thereby enhancing the biocom-
patibility of transistors and enabling cell-transistor fusion®. Such
a‘living transistor’ can accelerate the development of synthetic
bioelectronics involving cell-transistor integration®*?, facilitating

the advancement of various living, wearable and implantable bioel-
ectronic devices and logics. Notably, it may also present new oppor-
tunities to develop biohybrid neuromorphic hardware for computing
applications™*®,

The ability of hydrogel transistors to achieve a range of channel
thicknesses — from nanoscale thin films to millimetre-sized structures —
facilitates cell-transistor integration: with greater channel thicknesses,
these transistors can support cell growth and proliferation®. Such
stretchable systems can leverage the programmability of transis-
tors for active control, while also enabling the study of how biome-
chanical forces influence cell behaviour®®”, transistor performance”
and cell-transistor interactions’®®”,

Drug delivery

Hydrogels can provide spatial and temporal control over the release
of various therapeutic agents, including small-molecule drugs, mac-
romolecular drugs'®® and cells**'*!, This can be achieved by tuning the
multiscale properties of hydrogels, the rate of drug diffusion within the
hydrogel network or the drug-network interactions. Hydrogel tran-
sistors can further advance such systems to be programmable'*'%,
which s essential for precise closed-loop sensing and delivery.

Dynamic actuation

Controllable volumetric expansion or contraction by asafe, low-voltage
stimuli enables hydrogel transistors to gain programmable actuation
abilities'®*. These abilities derive from areversible electrochemical pro-
cess in semiconducting polymers'®>'°®, enabling hydrogel transistors
toadapt their shape and conform to complex tissue dynamics'”. This
controllable deformationis particularly valuable in neuro-electronics,
offering new solutions for minimally invasive, interactive and
shape-adaptable bioelectronic interfaces.

Characterization of hydrogel transistors

Hydrogel transistors, based on m-conjugated hydrogel semicon-
ductors, operate as three-terminal OECTs’. The state of electronic
conductivity of the semiconductor channel (electronic circuit),
sandwiched between source and drain electrodes, is electrochemi-
cally modulated through a gate electrode that controlsioninjection
from the electrolyte (ionic circuit)'°® (Fig. 4a). The characteriza-
tion of OECTs — and thus also of hydrogel transistors — includes,
primarily, characterization of output, transfer, transient response
and volumetric capacitance.

Output characterization

The hydrogel transistor regulates current flow between the source
and the drain under varying gate voltage (V,) conditions. The output
curves in Fig. 4b show the relationship between the drain current (/4)
and the drain voltage (V,) at different V. Saturation occurs when
reaches its maximum value for the given V,and becomesindependent
of V,, indicating the pinch-off voltage (V,) of the channel. This test is
critical for understanding the transistor’s current-driving capability
and overall output performance.

Theoretical models have been developed to understand the
operation of OECT devices'”’. In general, if a differential slice, dx, in
the vicinity of positionx of the channelis considered, then steady-state
current flux, /(x), follows the governing equation:

V= V(x) }dV(x)

j(X) = epelectronpo |:1 - Vp dx ’
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where V, is defined as gp,d/ c4, e is elementary charge, Uejecron is the
electron (or hole) mobility, p, is the initial electron (or hole) density
in the organic semiconductor before the application of V,, c4is capaci-
tance per unit area and V(x) is the spatial voltage profile. The equation
can be simplified for different regimes of behaviour following the
Bernards—-Malliaras model'”’, or the Friedlein-McLeod model"° and

a [ . b
Gate Linear

L s Electrolyte H

g

the Kaphle-Liissem model™ if considering the dependence of mobility
on carrier density.

Transfer characterization
Transfer characterization provides crucial insights into the transis-
tor’s switching, amplification and memory behaviour. To understand
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Fig. 4| Characterization of hydrogel transistors. a, Hydrogel transistors
operate in the three-terminal configuration (source, drain and gate electrodes).
The flow of electrons through the hydrogel semiconductor channel is modulated
by ionic currents from the gate. This ion-to-electron conversion enables the
transistor to amplify ionic signals, effectively converting small ionic inputs

into larger electronic outputs. b, Output curves. The hydrogel transistor
canobtain higher current due to itsincreased thickness. ¢, Transfer curves.

The hydrogel transistors can maintain their transfer characteristics even

under strain, benefiting from their combined low modulus and stretchability.

d, Transient curves. Hydrogel transistors, under the same channel thickness,
canrespond faster due to their porous structure, which facilitates ion transport.
e, The hydrogel semiconductor channel can maintain the capacitance-thickness

linearity at greater thickness, benefiting from the facilitated ion transport.

f,g, Theionic and electronic transport properties in hydrogel semiconductors
canbe evaluated with electrochemical impedance spectroscopy (f) and fitting
the data to equivalent circuits (g). h, Theion-to-electron conversion efficiency
can be evaluated by analysing the proportionality between transconductance
(g.) and the injected ionic charge from the gate (Q); failing to maintain

the proportionality may indicate deteriorated conversion. C, capacitance;
CPE, double-layer capacitive phase element; CPE,, geometric capacitive phase
element; /,, drain current; /,, gate current; OECT, organic electrochemical
transistor; Reecionic, €l€Ctronic resistance; Ry, ionic resistance; R, ohmic
resistance; V;, drain voltage; V,, gate voltage; V,, pinch-off voltage; 7/, real part
oftheimpedance; Z”,imaginary part of the impedance; Z,, Warburgimpedance.
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transistor switching behaviour — such as the on-offratio —itis critical
to assess how effectively V, controls the current flow in the hydrogel
channel. The transfer curves in Fig. 4c show the relationship between
Iyand V,atafixed V. By sweeping V,, the transistor’s on-off ratio and
threshold voltage can be obtained'**". Transfer curves are also critical
for evaluating transconductance (g,,), which measures the amplifica-
tion capability of the transistor; g,, is extracted from the transfer curve
using the following equation':
_ Ol

Em= v,

A high transconductance indicates efficient gate modulation of
the channel current, and is essential for amplification applications.

The hysteresis in the transfer curve (Fig. 4c) reflects the memory
effects of the transistor, where the current response depends on the
history of the applied V, (refs. 114,115). This is particularly relevant for
neuromorphic and memory-related applications'®*.

Transient characterization

Transient characterization provides insight into the dynamic per-
formance of the hydrogel transistor, evaluating the transistor’s
frequency response and neuromorphic behaviour'®®, Figure 4d
shows the time-dependent response of /; to changes in V,. Short-term
responses reflect the switching speed'”’, whereas long-termresponses
indicate memory or adaptation capabilities in neuromorphic
applications"®. This test is critical for understanding how quickly
a hydrogel transistor can respond to input signals and for mim-
icking biological processes, making it essential for wearable and
bioelectronics applications®.

Volumetric capacitance characterization

The ability of the hydrogel channel to modulate charge throughout
its thickness is critical for maintaining bulk transport, and the per-
formance of hydrogel transistors with varying channel dimensions
must be understood to ensure their effective operation in bioel-
ectronic systems. The volumetric capacitance evaluates the chan-
nel’s thickness limit, below which capacitance (C) maintains alinear
relationship with channel thickness"”"® (Fig. 4¢). This capacitance
canbe measured using electrochemical impedance spectroscopy™”’
(Fig. 4f), with values extractable via a Randles equivalent circuit'*°
and its variants* (Fig. 4g).

lons, electrons and ion-to-electron conversion

A quantitative measure of ion and electron transport in the hydrogel
channelis required to gain insight into the hydrogel transistor’s elec-
trical performance. Inionic conductors, the charge carriers areions —
either negatively charged anions or positively charged cations. The
hydrogel usually forms a porous structure where the diffusion coef-
ficient of ions is smaller than the diffusion coefficient for the sameion
inwater. It needs to be adjusted for the size and topography of the pores
asgivenby: c

D= DO;'

where D is the diffusion coefficient in a porous network, D, is the dif-
fusion coefficient in liquid, € is porosity and T is tortuosity'?. Ionic
mobility (u;,,) is the drift velocity of an ion per unit electric field. The
Einstein-Smoluchowski equation is widely used to infer ., from the
ionic diffusion coefficient:

_gqb
I'lion_kB_T’

where p;,,is dependent on the charge of theion (), diffusion coefficient
(D), Boltzmann constant (k) and temperature of the system (7). The
conductivity (6,,,) of anionic conductor is the sum of the contributions
from all charge carriers, as expressed by the following equation'*:

Oion= Z n;lzlep; .,
i

where g,,,is contributed by each mobileion species (i). For theithion,
z;isthe absolute value of the charge and n;is the charge carrier density.
According this equation, the g;,, value of a hydrogel depends on both
the properties of the ionic conductor, such asthe charge carrier density,
and the properties of the charged species, such as their mobility. The
assumptionisthatahydrogel will be charge neutral, so afixed chargein
the polymer backbone will resultin the same amount of mobile charge
that can contribute to the ionic conductivity'?.

The t jecron Value can be obtained through transfer characteri-
zation'”’, transient characterization'’, electrochemical imped-
ance spectroscopy'? and small-signal analysis'**. According to the
Bernards—Malliaras model'”’, Ugecqon Of @ hydrogel semiconductor
can be evaluated by fitting the transient response of /, to a constant
gatecurrent (/,):

t
It 1) =1~ 1 (f+ ?j,

e

L2
.=
I“le[ectron

Vd’

—%V — ﬂelectron
a2

Iy,

whereapulse of /;injects cations, causing alinear change of /; propor-
tional to the transit time (z,) of carriersacross achannel oflength L./, is
thesteady-state currentbaseline, and fis the fraction of I, that preferen-
tially flows to the drain (as determined by the relative electrochemical
state of the source and the drain).

Theion-to-electron conversion efficiency is an exclusive property
of hydrogel semiconductors over conventional hydrogels, determining
their transistor performance®. The conversion efficiency canbe evalu-
ated through the fundamental characterizations mentioned above.
In the steady state, ion-to-electron conversion can be assessed by
measuring the on-off ratio of hydrogel transistors, where a high on-off
ratio indicates efficient conversion. In dynamic, frequency-dependent
states, conversion efficiency can be evaluated from the response
time derived from transient curves, the transconductance, or the
subthreshold swing from transfer characteristics, which collectively
reflect dynamicion-to-electron conversion.

The dynamic conversion efficiency can be further evaluated by
analysing the relationship between the injected ionic charge fromthe
gate (Q) and g,,, (Fig. 4h). For example, in an OECT, Q exhibits similar

behaviour tog,,, given by the following equation™:

g, Q= [ldt,
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Box 2 | Manufacturing of hydrogel transistors

The fabrication of conventional transistors relies heavily on
high-cost and complex techniques to achieve functionality.
Processes such as photolithography, including extreme ultraviolet
(EUV) lithography'®®, are fundamental for producing traditional
nano-transistors and micro-transistors such as complementary
metal-oxide-semiconductor (CMOS)-based field-effect transistors
(FETs), electrolyte-gated FETs'® and electrochemical transistors
(ECTs)>" (see the figure). These methods require extreme precision
and significant financial investment, which limits accessibility and
scalability.

Hydrogel transistors overcome these limitations by maintaining
semiconductor properties and functionalities even at greater

Fabrication techniques:

thicknesses and in bulk forms. This is made possible by the
dimensional breakthrough of hydrogel semiconductors, which can
function effectively at sizes and thicknesses previously restricted to
thin-film semiconductors. This inherent advantage enables hydrogel
transistors to be fabricated using more accessible and low-resolution
techniques — such as textile manufacturing’"*° and printing'*®™** —
bypassing the need for complex and expensive microfabrication
processes.

This shift in fabrication not only reduces costs but also
significantly simplifies scalable production, positioning hydrogel
transistors as a transformative technology for widespread
commercialization and diverse applications.

Nanofabrication ($$$) Microfabrication ($$) . Macrofabrication ($) E
e.g. EUV lithography e.g. photolithography ! e.g. printing ;
Types of transistors: :'; ----------- Y E
CMOS FET, ECT E Hydrogel transistors I
- 1 U
Living systems: R ' .
Cell membrane . Cell Organoid Organ I
Micro-scale Macro-scale
\ \
nm um mm cm

Dimension

where the Qis calculated by integrating /, over time (d¢). The above
equation signifies that the frequency response of the transistor is
dominated by the ion transport process between the electrolyte
and the channel. This agreement between g, and Q occurs because
1;is proportional to the ionic charge injected into the channel. The
modulation of V, leads to amodulation of this charge, and hence g, is
proportional to Q. Failure to maintain proportionality, or decreased
proportionality, indicates adeteriorationin conversion efficiency of
the hydrogel transistor. Quantitatively, theion-to-electron conversion
efficiency can be determined by extracting the redox capacitance from
the total measured volumetric capacitance using Dunn’s method> >,

Conclusion and outlook

We have highlighted the rise of hydrogel transistors as a promising solu-
tion to address the longstanding mismatches between conventional
transistors and living systems. By leveraging biomimetic features of
hydrogels, including low modulus, stretchability, biocompatibility
and the ability to function in hydrated environments, these devices
overcome the mechanical, structural and functional limitations of tra-
ditionalinorganic or organic transistors. Their ability to operate at 3D
macroscopicscales, combined with low-cost and scalable fabrication

techniques, positions them as a transformative technology to enable
3D programmable and living bioelectronics (Box 2).

We have discussed critical advances in materials design, fabrica-
tion strategies and device optimization, which provide afoundation for
the development of hydrogel-based transistors capable of seamlessly
interfacing with biological systems. Challenges remain in material
development, fabrication and characterization, and these must be
addressedtofully realize the potential of hydrogel transistors for broad
bioelectronic applications.

Developing multifunctional semiconducting hydrogels with
robust mechanical properties, excellent ion-to-electron conversion,
andresilience under complex biological and environmental conditions
remainsapriority. Future research should focus on designing advanced
polymer networks, integrating hierarchical structures, and exploring
strategies to enhance response speed and stability without compromis-
ing tissue compatibility. Although low-cost and scalable manufacturing
methods such as printing have proven effective, achieving precise
control over device architecture, response speed and hysteresis at
larger scales requires further refinement.

Co-optimization of materials, fabrication processes and opera-
tion mechanisms will be essential to meet the diverse demands of
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bioelectronic applications. Realizing the full potential of hydrogel
transistors will require the development of operando characterization
platforms capable of monitoring multiple parameters simultane-
ously under biologically relevant conditions. These platforms will
provide deeper insightsinto the fundamental mechanisms of hydrogel
transistor operation and inform future device design.

Lookingahead, hydrogeltransistors provide unprecedented oppor-
tunities in emerging fields relevant to 3D, synthetic, programmable
andliving bioelectronics. For example, in tissue-integrated biosensing,
they offer the ability to create tissue-conformable active biosensors for
real-time health monitoring and disease diagnosis. Inbiohybrid systems,
they enable directintegration with cells and tissues, paving the way for
developing hybrid biocomputing platforms and bioelectronic devices,
such asbrain-machineinterfaces and artificial intelligence-embedded
wearables. Furthermore, their adaptability in mimicking biological func-
tions positions them as foundational components for developing biohy-
brid neuromorphic hardware for bio-integrated artificial intelligence,
whereelectronics and biology merge to createintelligent, living systems.

Published online: 27 November 2025
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