

The rise of hydrogel transistors

Hao Huang ^{1,2}, Xiaonan Chen¹, Jing Bai¹, Dingyao Liu¹, Björn Lüssem³, George G. Malliaras⁴ & Shiming Zhang ^{1,2} □

Abstract

Solid-state silicon transistors have profoundly transformed modern life by enabling a wide array of electronic technologies. The rise of bioelectronics has emphasized the necessity for interfacing transistors with living systems. However, challenges such as mechanical incompatibility, disparities in charge carrier types and differences in form factors present significant barriers to seamless integration. Recent advances in hydrogels have led to the development of hydrogel transistors, which merge the unique properties of hydrogels with transistor functionality, offering a solution to overcome these mismatches. This Perspective highlights hydrogel transistors, their biomimetic features and methods for their fabrication and characterization. We envision how hydrogel transistors, by evolving from conventional 2D thin-film electronics to 3D gel electronics, expand the device toolbox, enabling next-generation 3D, programmable and living bioelectronics.

Sections

Introduction

Hydrogel transistors

Biomimetic features of hydrogel transistors

Characterization of hydrogel transistors

Ions, electrons and ion-toelectron conversion

Conclusion and outlook

¹Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China. ²School of Biomedical Engineering, The University of Hong Kong, China. ³Institute for Microsensors, Actuators and Systems, Faculty of Physics and Electrical Engineering, Universität Bremen, Bremen, Germany. ⁴Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK. ⊠e-mail: beszhang@hku.hk

Introduction

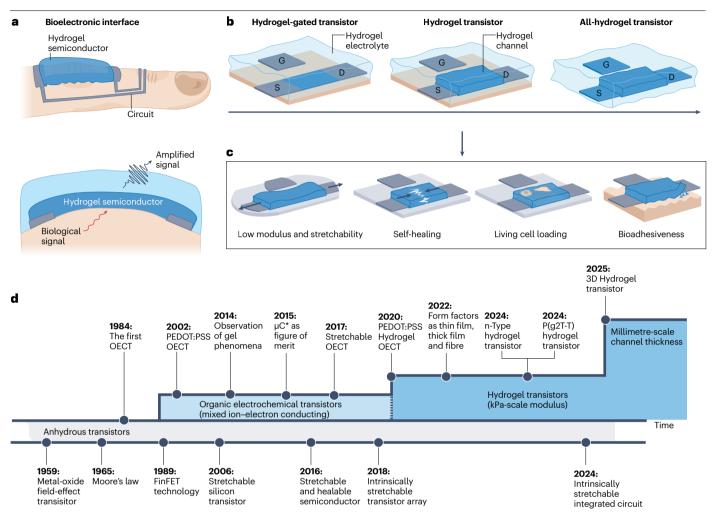
The year 2025 marks the 100th anniversary of the transistor. Invented by Julius Edgar Lilienfeld in 1925, transistors have become the foundation of modern nanoelectronics and microelectronics 1,2 . In 1947, John Bardeen, Walter Brattain and William Shockley demonstrated the Germanium point-contact transistor at Bell Laboratories, sparking a period of explosive development 3 that included the bipolar junction transistor 4,5 , the metal-oxide–semiconductor field-effect transistor (FET) 6 , the organic FET 7,8 and the organic electrochemical transistor (OECT) 9,10 . These transistors laid the foundation for the modern electronics industry, enabling functions such as signal amplification 11 , logic operations $^{12-15}$ and artificial intelligence 16,17 .

Transistors are typically three-terminal semiconductor devices containing a gate electrode that modulates the conducting state of the semiconductor channel, which is sandwiched between source and drain electrodes¹⁸. The amplification capabilities of transistors can help enhance the signal-to-noise ratio of biosensors^{11,19} (Fig. 1a). The growing bioelectronic need for recording and processing bio-signals has propelled the use of transistors to interface living systems and improve signal quality²⁰. However, inherent mismatches exist between conventional transistors and living systems, such as mechanical mismatch (hard surface versus soft surface)^{21–23}, charge carrier mismatch (electronic signals versus ionic signals)^{24,25}, material mismatch (inorganic material versus organic material)^{26,27} and dimension mismatch (2D versus 3D)^{28–30}. These mismatches have hindered the seamless integration of transistors with living systems^{31,32}.

Hydrogels are 3D, wet, soft polymeric materials heavily swollen with water³³. They are promising biomaterials owing to their ability to form an intimate interface with living systems. Their soft, elastic and water-abundant nature mimics the mechanical and chemical environment of biological systems³⁴. For example, the 3D polymer network of hydrogels features tunable physico-chemical properties that are needed to satisfy the specific requirements for tissue-engineering applications^{33,35}. Microfabricated hydrogels have been widely used in bioelectronics and medical applications ^{36–39}. Hydrogels have also been functionalized with conductive components for bioelectronics applications. For instance, hydrogel networks have been blended with metal nanowires (such as silver and gold⁴⁰⁻⁴²), carbon nanotubes⁴³. graphene44 and conducting polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)⁴⁵, polypyrrole⁴⁶ and polyaniline⁴⁷. The state-of-the-art conductive hydrogels feature conductivities between 10² and 10³ S cm⁻¹, while maintaining a tissue-like modulus and stretchability⁴⁸⁻⁵¹.

Although high conductivity is achieved in conductive hydrogels, they have lacked semiconducting properties, limiting their use to passive applications without amplification or the ability to regulate electron flow for logic functions 52. To leverage the potential of hydrogels for active bio-interfacing, they have been assembled into transistor architectures (Fig. 1b). In the early stages, hydrogels were limited to use as supplementary components, such as non-fluid electrolytes 18,53,54, to assemble transistors. Since then, hydrogel-based semiconductors have been developed 19,55-57, enabling their direct use as the channel material to create true hydrogel transistors for signal processing and amplification. This breakthrough also opens opportunities to develop fully hydrogel-based transistors for a wide range of bioelectronics applications.

Despite the advances of hydrogel transistors, this field is still in its infancy and lacks comprehensive resources to guide newcomers to the field. This Perspective highlights hydrogel transistors. We first define the different types of hydrogel transistors and outline their


development roadmap. Next, we explore their fabrication techniques, characterization methods and unique form factors. Finally, we envision how hydrogel transistors, capable of operating at the macroscale and cell loading, can start new research directions of 3D programmable and living bioelectronics, extending the capability of traditional silicon transistors.

Hydrogel transistors

As defined by the International Union of Pure and Applied Chemistry (IUPAC), a hydrogel is, first and foremost, a gel – a non-fluid colloidal or polymer network that is swollen throughout its entire volume by a fluid; and the fluid that swells the polymer network is water 58 . In the context of hydrogel transistors discussed in this Perspective, we mainly refer to hydrogels that are used as semiconductor channel materials.

According to the IUPAC definition, organic thin-film transistors, including those based on semiconducting molecules or polymers such as PEDOT:PSS⁵⁹, poly(benzimidazobenzophenanthroline):poly(ethylen eimine)⁶⁰, poly(benzodifurandione)⁶¹ and poly(pyridinium phenylene)¹⁹ can all, technically, be regarded as hydrogel transistors if they swell throughout their entire volume in the presence of water. Nevertheless, those thin-film devices are typically less than 1-µm-thick and their swelling properties are limited, normally less than 50%, owing to the high degree of cross-linking required to achieve the crystallization necessary for good semiconducting performance⁶². Consequently, Young's modulus ranges from megapascals to gigapascals – much higher than the kilopascal-scale modulus of biological systems^{63,64}. So, although these organic transistors can generally be categorized as hydrogel transistors, they fail to leverage the desired properties of emerging tissue-compliant hydrogels (such as kilopascal-scale modulus⁴⁹, greater thicknesses and high stretchability⁶⁵) and fall short of addressing the multidimensional mismatches with living systems. Accordingly, we define a hydrogel transistor as a thick-gel transistor (TGT) in contrast to the thin-film transistor (TFT). TFTs are made by depositing thin semiconducting layers onto rigid substrates, with planar (surface-to-surface) interfaces and micro-scale thicknesses (typically less than 1 um). TGTs, by contrast. are freestanding devices made from soft semiconducting materials with a 3D network structure. Their bulk (volume-to-volume) interfaces enable efficient 3D charge transport, and their thickness is capable of scaling from micro- to macro-scale (exceeding 100 µm, the boundary between micro- and macro-scale), allowing seamless integration with dynamic living systems.

State-of-the-art hydrogel transistors aim to develop devices entirely made of gel materials, with channels featuring hydrogels that possess mixed ion-electron conductivity, enabling ion-to-electron conversion through reversible electrochemical processes. A key objective is to achieve kilopascal-scale softness in the semiconductor channel for tissue-level compatibility while maintaining substantial channel thicknesses to ensure mechanical robustness for free-standing features 55,57. This requires advanced molecular, polymer and supramolecular processing to impart semiconducting properties to macroscopic bulk gels, which was previously unattainable until the report of 3D hydrogel semiconductors³⁰. One approach involves the deliberate construction of 3D micropores within semiconducting polymers to serve as water reservoirs⁶⁶. These reservoirs can greatly enhance the swelling ratio, by as much as 1,000%, with excellent reversibility³⁰ – far exceeding the capabilities of hydrophilic semiconducting polymers. However, these materials are often fragile and lack stretchability. Another strategy employs a multi-network supramolecular system, where the semiconducting network is complemented with other supporting polymer

Fig. 1 | **Hydrogel transistors provide exclusive opportunities to fill gaps between transistors and living systems. a**, A hydrogel transistor interfaces
with a living system with tissue-like softness. It translates ionic biological signals
into amplified electronic signals. **b**, Hydrogel transistors have evolved from
hydrogel-gated transistors (previous generation) to hydrogel semiconductor
transistors (current generation), and are advancing towards fully hydrogel-based
transistors (next generation). **c**, Hydrogel transistors demonstrate a broad
range of biomimetic properties, such as a low modulus and high stretchability,
self-healing behaviour, the capacity to support living cells as a living transistor
and bioadhesiveness. **d**, Transistor technologies have developed from the early
anhydrous germanium point-contact transistor to the organic electrochemical

transistor (OECT), and currently to hydrogel transistors. This progression not only marks a shift in material systems and operational environments but also reflects a dimensional transformation, with the thickness of the channel evolving from nano-scale and micro-scale thin films to the millimetre-scale bulk gels in hydrogel transistors, enabling 3D, hydrated and programmable bioelectronic interfacing. Major milestones are indicated along the timeline: 1959 (ref. 6), 1965 (ref. 3), 1984 (ref. 10), 1989 (ref. 128), 2002 (ref. 67), 2006 (ref. 129), 2014 (ref. 130), 2015 (refs. 112,117), 2016 (ref. 131), 2017 (ref. 53), 2018 (ref. 132), 2020 (ref. 55), 2022 (refs. 56,69,71), 2024 (refs. 15,19,57) and 2025 (ref. 30). D, drain electrode; G, gate electrode; PEDOT: PSS, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; S, source electrode.

networks via non-covalent interactions^{19,55-57}. In this configuration, the semiconducting network contributes to the hydrogel's semiconducting properties, whereas the supporting polymer network provides additional tissue-like properties, such as stretchability, needed for compatibility with biological systems.

Hydrogel transistors based on multi-network hydrogel semiconductors have recently achieved notable success in combining a low modulus and stretchability^{55,57} (Fig. 1c). The improved mechanical properties are essential for establishing intimate and robust tissue interfaces. Additionally, these transistors are able to retain function at greater channel thicknesses compared with thin-film semiconductors, mainly because, first, the multi-network structure allows more material

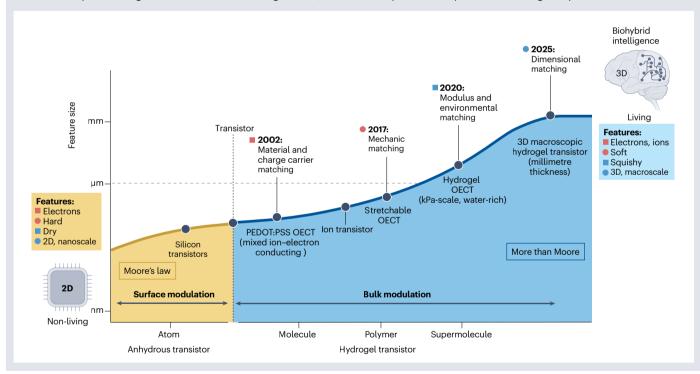
components to be hosted and, second, their micropores contribute to a superior swelling capacity 30 . Therefore, the channel thickness can easily be on the scale of micrometres to millimetres, corresponding to a macroscopic transistor 30 , which opens a new technological pathway distinct from conventional transistors (Box 1). This unique feature provides 3D capacity for cell loading and offers easier manipulation in a free-standing form, opening new opportunities for interfacing with macroscale biological systems.

The rise of hydrogel transistors

Hydrogel transistors evolved from OECTs^{9,10}, which are considered flagship devices in the transdisciplinary field of organic bioelectronics

Box 1 | Technology transfer of hydrogel transistors

Conventional transistors, which are dry, rigid and non-living, have improved computing power by becoming smaller and operating within limited 2D spaces. This strategy of miniaturization has enabled the packing of more transistors into very large-scale integration systems. However, this approach is slowing down as Moore's law reaches its limits¹³³.


In contrast, hydrogel transistors, which are water-rich, soft and living, take a complementary approach. They enhance computing power without the need for miniaturization. Instead, they overcome the dimensional limitations of conventional transistors, enabling the integration of electronic devices with biological systems to enable 3D and programmable bioelectronics. This 'More than Moore' strategy¹³⁴ facilitates the development of brain-inspired intelligent systems that, despite being larger in size, remain highly efficient and powerful in computational performance.

The figure highlights the evolution of hydrogel transistors and their progressive advancements (highlighted by leader line) in simultaneously addressing critical mismatches — charge carrier,

mechanical and dimensional mismatches — on the path towards practical bioelectronic integrations.

In 2002, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based organic electrochemical transistors (OECTs) introduced mixed ion–electron conduction, enabling stable operation of organic transistors in aqueous environments and resolving the material and charge carrier mismatch between transistors and living systems⁶⁷. By 2020, the development of kilopascal-scale hydrogel OECTs tackled modulus constraints, overcoming the modulus and environmental mismatch with biological tissues⁵⁵. Most recently, in 2025, hydrogel OECTs broke through thickness limitations with the introduction of 3D millimetre-thick channel designs, enabling cell loading and addressing the dimensional mismatch³⁰.

By overcoming these multidimensional mismatches, hydrogel transistors are paving the way for brain-inspired hybrid intelligence systems that seamlessly combine the efficiency of electronics with the unparalleled capabilities of biological systems.

involving organic electronics, electrochemistry and microelectronics (Fig. 1d). OECTs are iontronic transistors in which the modulation of channel conductance is achieved through ion injection from the electrolyte and reversible electrochemical reactions within the semiconducting polymer. The first OECT, developed in 1984 (ref. 10), used the conducting polymer polypyrrole as the channel material. However, OECTs were not widely adopted in bioelectronics until 2002, when the semiconducting polymer PEDOT:PSS was introduced as the channel material 54,67 , which greatly improved device stability in both air and water.

Hydrogel transistors were developed as part of the effort to create stretchable OECTs^{53,68}, with a particular focus on designing

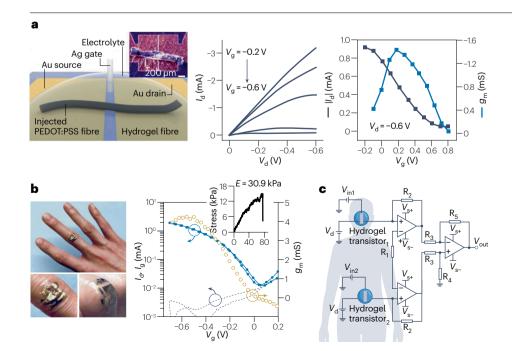
low-modulus and stretchable semiconducting polymers for these devices. Towards this goal, in 2020, the first hydrogel semiconductor with a Young's modulus as low as 1 kPa was synthesized by mixing a PEDOT:PSS suspension with 4-dodecylbenzenesulfonic acid (DBSA) 55 . By optimizing structural and processing controls, efficient ion-to-electron conversion within the hydrogel was achieved. To further enhance the mechanical stretchability of the hydrogel semiconductor while maintaining its low modulus, a multi-network polymer approach was adopted, blending the π -conjugated PEDOT:PSS hydrogel with a secondary stretchable hydrogel network, polyacrylamide (PAAm). The resulting hydrogel semiconductor exhibited a modulus range of

1–100 kPa and a stretchability of up to 50%, and by processing it into the form of a fibre (Fig. 2a) a hydrogel transistor with an on-off ratio of 100 was demonstrated⁵⁵. This represented the first observation of semiconducting behaviour in hydrogels.

Later, the on-off ratio of hydrogel transistors was boosted to 10^3 through the controlled synthesis of a double-network hydrogel based on PEDOT:PSS and PAAm⁵⁶. Other hydrogel networks, such as poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAAMPSA), were explored and a hydrogel transistor array exhibited a similar 10^3 on-off ratio and an average transconductance up to 13 mS (ref. 69). Hydrogel transistors using poly(vinyl alcohol) (PVA) and PEDOT:PSS have been reported, where Raman spectroscopy analyses indicated that the ionic transport through the swollen hydrogel was clearly different from the transport in a thin film⁷⁰. It was later demonstrated that, despite a relatively low on-off ratio, it was possible to develop a semiconducting hydrogel with only PEDOT:PSS by adding a choline-based ionic liquid during processing⁷¹.

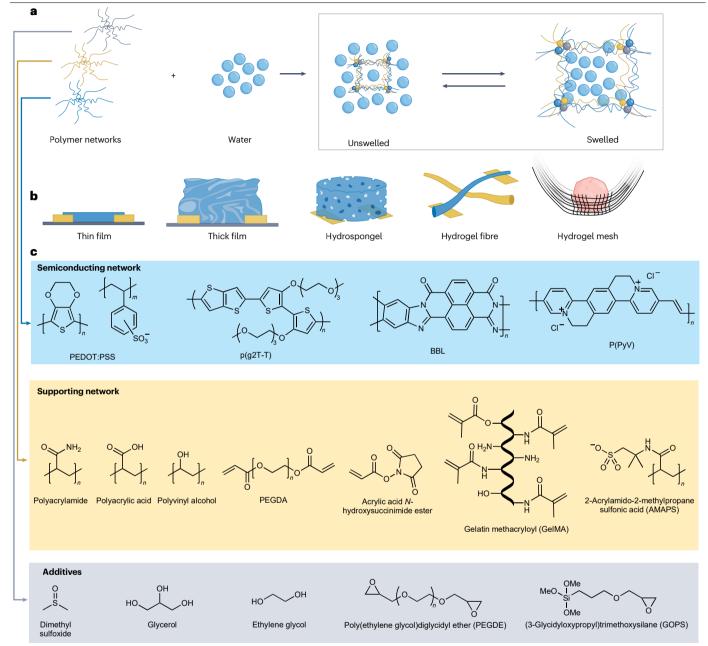
Other types of hydrogel transistors have also been reported. An n-type semiconducting hydrogel was reported based on the redox-active and hydrophilic semiconducting polymer, which shows good electron mobilities, enabling the fabrication of complementary logic circuits and signal amplifiers¹⁹. A solvent exchange strategy for polymer integration in hydrogels has enabled the incorporation of the poly(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)2,2':5',2"-terthiophene) (p(g2T-T)) polymer into a hydrogel matrix formed from acrylic acid, resulting in a soft, biocompatible material with excellent semiconducting performance⁵⁷ (Fig. 2b,c).

Material strategies for hydrogel transistors


Hydrogel semiconductors are electroactive materials, serving as the channel of transistors. They play a central role for signal processing and amplification by enabling mixed ion–electron transport and conversion within the hydrogel. Unlike conventional organic semiconductors, which are typically composed of a single polymer

network, hydrogel semiconductors require the integration of multiple polymer networks, each engineered to perform a specific function. These networks typically include a semiconducting network, a supporting network and additives^{55,68} (Fig. 3). Achieving optimal semiconducting properties requires not only that the concentrations of these polymer networks are balanced but also that the processing conditions are carefully controlled. Both affect the phase formation of the semiconducting network and fine-tuning of the hydrogel's porosity, which are critical for efficient ion and electron transport, as well as ion-to-electron conversion³⁰. Finally, the manufacturing approach determines the form factor of hydrogel transistors, such as films^{14,72,73}, hydrosponges^{29,74}, fibres⁷¹ and meshes⁷⁵, enabling them to meet the specific requirements of various bioelectronic applications (Fig. 3b).

The following considerations are crucial when developing hydrogel semiconductors for hydrogel transistors.


First, it is essential to select an air and water-stable π -conjugated polymer network — for example, using redox-active polymers with reversible electrochemical reactions, such as PEDOT:PSS, or semiconductor fillers whose conductivity can be modulated electrostatically, such as graphene, metal oxides or semi-metallic polymers ⁷⁶. These materials should demonstrate stability under various conditions, including prolonged exposure to water, air and complex biological environments ⁷⁷. Maintaining stability ensures that the semiconducting polymer retains its functionality during hydrogel assembly and in practical applications.

Second, the semiconducting polymer must be capable of forming an independent 3D network. This can be achieved via reversible supramolecular interactions, such as $\pi - \pi$ stacking, electrostatic coupling or non-reversible covalent bonding ^{55,56}. Establishing a robust 3D semiconducting network ensures its viability across different phases and material forms. This property is a fundamental requirement for tissue-like functionality in hydrogels and practical applications in bioelectronics.

Fig. 2 | Hydrogel transistors and circuits for practical bioelectronic applications.

a, Hydrogel-fibre semiconductor transistors and their output and transfer characteristics. b. Hydrogel transistors form a highly conformable interface with a bending human finger, demonstrating semiconducting properties by the transfer curve and a low modulus of 30.9 kPa. c, Hydrogel transistors can use operational amplification circuits for on-body signal amplifying. E, Young's $modulus; g_m, transconductance; I_d, drain$ current; Ig, gate current; PEDOT: PSS, poly(3,4ethylenedioxythiophene) polystyrene sulfonate; R, resistor; V_d , drain voltage; V_g , gate voltage; $V_{\rm in1}$, $V_{\rm in2}$, input bio-signals; $V_{\rm s+}$, non-inverting input voltage of amplifier; V_{s} , inverting input voltage of amplifier; V_{out} , output voltage. Part **a** reprinted with permission from ref. 55, Wiley-VCH, Part b is reprinted with permission from ref. 57, AAAS.

Fig. 3 | **Material strategies towards hydrogel transistors and tissue-like properties. a**, Network design of a hydrogel semiconductor involving a semiconducting network, a supporting network and additives. **b**, Diverse form factors of hydrogel transistors. **c**, Typical semiconducting networks involve organic semiconducting polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(3,3'-bis(2-(2-(2-methoxyethoxy))).

ethoxy)ethoxy)2,2':5',2"-terthiophene) (p(g2T-T)). The supporting networks such as polyacrylamide (PAAm) impart hydrogel with mechanical properties such as softness and stretchability. Additives are incorporated to tune the physicochemical properties of the hydrogel, for example, DMSO can be used to enhance the electronic conductivity of PEDOT:PSS.

Third, the resulting multi-network hydrogels must be capable of supporting efficient ion and electron transport, as well as effective ion-to-electron conversion⁷⁸⁻⁸⁰. These characteristics are essential for modulating the hydrogel's redox properties, allowing for precise tailoring of its semiconducting performance to suit various bioelectronic applications.

Biomimetic features of hydrogel transistors

By harnessing the tissue-like properties of hydrogels, hydrogel transistors create a seamless interface with living systems³³. Integrating hydrogel-specific attributes into transistors imparts them with unprecedented capabilities, including mechanical conformability, self-healing, responsiveness to stimuli, actuation and even living

functionalities. These biomimetic features effectively bridge the gap between traditional transistors and the intricate dynamics of biological tissues.

Mechanical conformability

The exceptional mechanical properties of hydrogels, particularly their kilopascal-scale low modulus, enhance the mechanical compliance of hydrogel transistors. Mechanical conformability refers to a material's ability to adapt or conform to curved or irregular surfaces. It is inversely related to bending stiffness – materials with lower bending stiffness are more conformable⁸¹. The bending stiffness (B) of a material depends on its Young's modulus (E), as given by the following equation⁸²:

$$B = \frac{Eh^3}{12(1-v^2)},$$

where h is the elastic thickness and v is Poisson's ratio. Transistors assembled using materials with a low modulus are more conformable because their bending stiffness is reduced.

When a secondary stretchable hydrogel network is introduced, to form a double network with the semiconducting network, these hydrogel transistors can gain additional stretchability and, hence, mechanical robustness without compromising their low modulus ^{65,83,84}. The combination of mechanical compliance and robustness is essential for minimizing tissue damage and reducing motion artefacts at device–tissue interfaces, ensuring prolonged and reliable integration with biological systems.

In addition, hydrogel transistors, benefiting from their greater thickness scalability³⁰, adopt diverse form factors that are difficult to achieve using conventional thin-film transistors. Their mechanical robustness enables them to exist in free-standing forms, such as fibres⁷¹, meshes⁸⁵ or hydrospongel structures²⁹.

Self-healing ability

Hydrogels can endow transistors with self-healing capabilities that closely mimic the natural repair processes of biological tissues, thus improving their lifespan for prolonged use⁸⁶. This self-healing ability is achieved by introducing dynamic bonds within multi-networked hydrogels, and can be designed to be autonomous, without the need for external intervention.

Bioadhesiveness

Hydrogels can be designed with unique bioadhesive properties, to achieve strong adhesion between transistors and biological tissues^{87,88}. Similar to self-healing, improved adhesion can be realized by introducing dynamic bonds within the hydrogel, which then form ionic bonds with the ionic species on targeted surfaces^{44,89}. Additionally, microstructures can be created to serve as suckers or drains to further improve adhesion forces⁹⁰. These combined approaches have been validated to achieve strong underwater adhesion^{91,92}, a highly desirable characteristic for interfacing with wet biological systems.

A living transistor

The 3D nature of hydrogels and their water-rich composition permit cell loading and proliferation, thereby enhancing the biocompatibility of transistors and enabling cell–transistor fusion³⁵. Such a 'living transistor' can accelerate the development of synthetic bioelectronics involving cell–transistor integration^{29,93}, facilitating

the advancement of various living, wearable and implantable bioelectronic devices and logics. Notably, it may also present new opportunities to develop biohybrid neuromorphic hardware for computing applications ^{94,95}.

The ability of hydrogel transistors to achieve a range of channel thicknesses – from nanoscale thin films to millimetre-sized structures – facilitates cell–transistor integration: with greater channel thicknesses, these transistors can support cell growth and proliferation³⁰. Such stretchable systems can leverage the programmability of transistors for active control, while also enabling the study of how biomechanical forces influence cell behaviour^{96,97}, transistor performance⁹³ and cell–transistor interactions^{98,99}.

Drug delivery

Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs¹⁰⁰ and cells^{33,101}. This can be achieved by tuning the multiscale properties of hydrogels, the rate of drug diffusion within the hydrogel network or the drug–network interactions. Hydrogel transistors can further advance such systems to be programmable^{102,103}, which is essential for precise closed-loop sensing and delivery.

Dynamic actuation

Controllable volumetric expansion or contraction by a safe, low-voltage stimuli enables hydrogel transistors to gain programmable actuation abilities ¹⁰⁴. These abilities derive from a reversible electrochemical process in semiconducting polymers ^{105,106}, enabling hydrogel transistors to adapt their shape and conform to complex tissue dynamics ¹⁰⁷. This controllable deformation is particularly valuable in neuro-electronics, offering new solutions for minimally invasive, interactive and shape-adaptable bioelectronic interfaces.

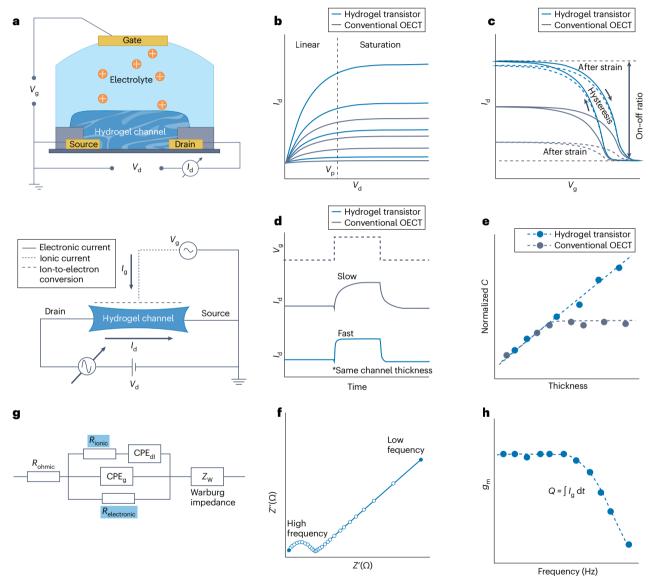
Characterization of hydrogel transistors

Hydrogel transistors, based on π -conjugated hydrogel semiconductors, operate as three-terminal OECTs°. The state of electronic conductivity of the semiconductor channel (electronic circuit), sandwiched between source and drain electrodes, is electrochemically modulated through a gate electrode that controls ion injection from the electrolyte (ionic circuit)¹⁰⁸ (Fig. 4a). The characterization of OECTs – and thus also of hydrogel transistors – includes, primarily, characterization of output, transfer, transient response and volumetric capacitance.

Output characterization

The hydrogel transistor regulates current flow between the source and the drain under varying gate voltage $(V_{\rm g})$ conditions. The output curves in Fig. 4b show the relationship between the drain current $(I_{\rm d})$ and the drain voltage $(V_{\rm d})$ at different $V_{\rm g}$. Saturation occurs when $I_{\rm d}$ reaches its maximum value for the given $V_{\rm g}$ and becomes independent of $V_{\rm d}$, indicating the pinch-off voltage $(V_{\rm p})$ of the channel. This test is critical for understanding the transistor's current-driving capability and overall output performance.

Theoretical models have been developed to understand the operation of OECT devices¹⁰⁹. In general, if a differential slice, dx, in the vicinity of position x of the channel is considered, then steady-state current flux, J(x), follows the governing equation:


$$J(x) = e\mu_{\text{electron}} p_0 \left[1 - \frac{V_g - V(x)}{V_p} \right] \frac{dV(x)}{dx},$$

where $V_{\rm p}$ is defined as $qp_0d/c_{\rm d}$, e is elementary charge, $\mu_{\rm electron}$ is the electron (or hole) mobility, p_0 is the initial electron (or hole) density in the organic semiconductor before the application of $V_{\rm g}$, $c_{\rm d}$ is capacitance per unit area and V(x) is the spatial voltage profile. The equation can be simplified for different regimes of behaviour following the Bernards–Malliaras model¹⁰⁹, or the Friedlein–McLeod model¹¹⁰ and

the Kaphle–Lüssem model $^{\rm III}$ if considering the dependence of mobility on carrier density.

Transfer characterization

Transfer characterization provides crucial insights into the transistor's switching, amplification and memory behaviour. To understand

Fig. 4 | **Characterization of hydrogel transistors. a**, Hydrogel transistors operate in the three-terminal configuration (source, drain and gate electrodes). The flow of electrons through the hydrogel semiconductor channel is modulated by ionic currents from the gate. This ion-to-electron conversion enables the transistor to amplify ionic signals, effectively converting small ionic inputs into larger electronic outputs. b, Output curves. The hydrogel transistor can obtain higher current due to its increased thickness. **c**, Transfer curves. The hydrogel transistors can maintain their transfer characteristics even under strain, benefiting from their combined low modulus and stretchability. **d**, Transient curves. Hydrogel transistors, under the same channel thickness, can respond faster due to their porous structure, which facilitates ion transport. **e**, The hydrogel semiconductor channel can maintain the capacitance—thickness

linearity at greater thickness, benefiting from the facilitated ion transport. **f**,**g**, The ionic and electronic transport properties in hydrogel semiconductors can be evaluated with electrochemical impedance spectroscopy (**f**) and fitting the data to equivalent circuits (**g**). **h**, The ion-to-electron conversion efficiency can be evaluated by analysing the proportionality between transconductance (g_m) and the injected ionic charge from the gate (Q); failing to maintain the proportionality may indicate deteriorated conversion. C, capacitance; CPE_{dl}, double-layer capacitive phase element; CPE_g, geometric capacitive phase element; I_d , drain current; I_g , gate current; OECT, organic electrochemical transistor; $R_{\text{electronic}}$, electronic resistance; R_{ionic} , ionic resistance; R_{ohmic} , ohmic resistance; V_d , drain voltage; V_g , gate voltage; V_p , pinch-off voltage; Z'', real part of the impedance; Z'', imaginary part of the impedance; Z_w , Warburg impedance.

transistor switching behaviour – such as the on–off ratio – it is critical to assess how effectively $V_{\rm g}$ controls the current flow in the hydrogel channel. The transfer curves in Fig. 4c show the relationship between $I_{\rm d}$ and $V_{\rm g}$ at a fixed $V_{\rm d}$. By sweeping $V_{\rm g}$, the transistor's on–off ratio and threshold voltage can be obtained ^{109,112}. Transfer curves are also critical for evaluating transconductance $(g_{\rm m})$, which measures the amplification capability of the transistor; $g_{\rm m}$ is extracted from the transfer curve using the following equation ¹¹³:

$$g_{\rm m} = \frac{\partial I_{\rm d}}{\partial V_{\rm o}}$$
.

A high transconductance indicates efficient gate modulation of the channel current, and is essential for amplification applications.

The hysteresis in the transfer curve (Fig. 4c) reflects the memory effects of the transistor, where the current response depends on the history of the applied $V_{\rm g}$ (refs. 114,115). This is particularly relevant for neuromorphic and memory-related applications ^{16,32}.

Transient characterization

Transient characterization provides insight into the dynamic performance of the hydrogel transistor, evaluating the transistor's frequency response and neuromorphic behaviour 16,116 . Figure 4d shows the time-dependent response of I_d to changes in V_g . Short-term responses reflect the switching speed 109 , whereas long-term responses indicate memory or adaptation capabilities in neuromorphic applications 116 . This test is critical for understanding how quickly a hydrogel transistor can respond to input signals and for mimicking biological processes, making it essential for wearable and bioelectronics applications 32 .

Volumetric capacitance characterization

The ability of the hydrogel channel to modulate charge throughout its thickness is critical for maintaining bulk transport, and the performance of hydrogel transistors with varying channel dimensions must be understood to ensure their effective operation in bioelectronic systems. The volumetric capacitance evaluates the channel's thickness limit, below which capacitance (C) maintains a linear relationship with channel thickness ^{117,118} (Fig. 4e). This capacitance can be measured using electrochemical impedance spectroscopy ¹¹⁹ (Fig. 4f), with values extractable via a Randles equivalent circuit ¹²⁰ and its variants ⁴⁹ (Fig. 4g).

Ions, electrons and ion-to-electron conversion

A quantitative measure of ion and electron transport in the hydrogel channel is required to gain insight into the hydrogel transistor's electrical performance. In ionic conductors, the charge carriers are ions—either negatively charged anions or positively charged cations. The hydrogel usually forms a porous structure where the diffusion coefficient of ions is smaller than the diffusion coefficient for the same ion in water. It needs to be adjusted for the size and topography of the pores as given by:

$$D = D_0 \frac{\varepsilon}{\tau}$$
,

where D is the diffusion coefficient in a porous network, D_0 is the diffusion coefficient in liquid, ε is porosity and τ is tortuosity ^{121,122}. Ionic mobility (μ_{ion}) is the drift velocity of an ion per unit electric field. The Einstein–Smoluchowski equation is widely used to infer μ_{ion} from the ionic diffusion coefficient:

$$\mu_{\rm ion} = \frac{\rm qD}{k_{\rm B}T}$$

where μ_{ion} is dependent on the charge of the ion (q), diffusion coefficient (D), Boltzmann constant (k_{B}) and temperature of the system (T). The conductivity (σ_{ion}) of an ionic conductor is the sum of the contributions from all charge carriers, as expressed by the following equation 123 :

$$\sigma_{\rm ion} = \sum_{i} n_i |z_i| e \mu_{\rm ion}$$

where $\sigma_{\rm ion}$ is contributed by each mobile ion species (i). For the ith ion, z_i is the absolute value of the charge and n_i is the charge carrier density. According this equation, the $\sigma_{\rm ion}$ value of a hydrogel depends on both the properties of the ionic conductor, such as the charge carrier density, and the properties of the charged species, such as their mobility. The assumption is that a hydrogel will be charge neutral, so a fixed charge in the polymer backbone will result in the same amount of mobile charge that can contribute to the ionic conductivity.

The $\mu_{\rm electron}$ value can be obtained through transfer characterization¹⁰⁹, transient characterization¹⁰⁹, electrochemical impedance spectroscopy¹¹² and small-signal analysis¹²⁴. According to the Bernards–Malliaras model¹⁰⁹, $\mu_{\rm electron}$ of a hydrogel semiconductor can be evaluated by fitting the transient response of $I_{\rm d}$ to a constant gate current ($I_{\rm g}$):

$$I_{\rm d}(t,I_{\rm g}) = I_0 - I_{\rm g} \left(f + \frac{t}{\tau_{\rm e}} \right),$$

$$\tau_{\rm e} = \frac{L^2}{\mu_{\rm electron} V_{\rm d}}$$

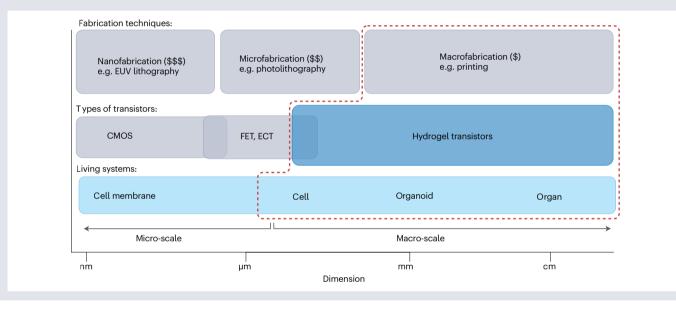
$$-\frac{\partial I_{\rm d}}{\partial t}V_{\rm d} = \frac{\mu_{\rm electron}}{L^2}I_{\rm g},$$

where a pulse of I_g injects cations, causing a linear change of I_d proportional to the transit time (τ_e) of carriers across a channel of length $L.I_0$ is the steady-state current baseline, and f is the fraction of I_g that preferentially flows to the drain (as determined by the relative electrochemical state of the source and the drain).

The ion-to-electron conversion efficiency is an exclusive property of hydrogel semiconductors over conventional hydrogels, determining their transistor performance³⁰. The conversion efficiency can be evaluated through the fundamental characterizations mentioned above. In the steady state, ion-to-electron conversion can be assessed by measuring the on-off ratio of hydrogel transistors, where a high on-off ratio indicates efficient conversion. In dynamic, frequency-dependent states, conversion efficiency can be evaluated from the response time derived from transient curves, the transconductance, or the subthreshold swing from transfer characteristics, which collectively reflect dynamic ion-to-electron conversion.

The dynamic conversion efficiency can be further evaluated by analysing the relationship between the injected ionic charge from the gate (Q) and g_m (Fig. 4h). For example, in an OECT, Q exhibits similar behaviour to g_m , given by the following equation¹¹³:

$$g_{\rm m} \propto Q = \int I_{\rm g} dt$$


Box 2 | Manufacturing of hydrogel transistors

The fabrication of conventional transistors relies heavily on high-cost and complex techniques to achieve functionality. Processes such as photolithography, including extreme ultraviolet (EUV) lithography¹³⁵, are fundamental for producing traditional nano-transistors and micro-transistors such as complementary metal-oxide-semiconductor (CMOS)-based field-effect transistors (FETs), electrolyte-gated FETs¹⁸ and electrochemical transistors (ECTs)^{9,136} (see the figure). These methods require extreme precision and significant financial investment, which limits accessibility and scalability.

Hydrogel transistors overcome these limitations by maintaining semiconductor properties and functionalities even at greater

thicknesses and in bulk forms. This is made possible by the dimensional breakthrough of hydrogel semiconductors, which can function effectively at sizes and thicknesses previously restricted to thin-film semiconductors. This inherent advantage enables hydrogel transistors to be fabricated using more accessible and low-resolution techniques — such as textile manufacturing 137-139 and printing 140-143 — bypassing the need for complex and expensive microfabrication processes.

This shift in fabrication not only reduces costs but also significantly simplifies scalable production, positioning hydrogel transistors as a transformative technology for widespread commercialization and diverse applications.

where the Q is calculated by integrating $I_{\rm g}$ over time (dt). The above equation signifies that the frequency response of the transistor is dominated by the ion transport process between the electrolyte and the channel. This agreement between $g_{\rm m}$ and Q occurs because $I_{\rm d}$ is proportional to the ionic charge injected into the channel. The modulation of $V_{\rm g}$ leads to a modulation of this charge, and hence $g_{\rm m}$ is proportional to Q. Failure to maintain proportionality, or decreased proportionality, indicates a deterioration in conversion efficiency of the hydrogel transistor. Quantitatively, the ion-to-electron conversion efficiency can be determined by extracting the redox capacitance from the total measured volumetric capacitance using Dunn's method 125-127.

Conclusion and outlook

We have highlighted the rise of hydrogel transistors as a promising solution to address the longstanding mismatches between conventional transistors and living systems. By leveraging biomimetic features of hydrogels, including low modulus, stretchability, biocompatibility and the ability to function in hydrated environments, these devices overcome the mechanical, structural and functional limitations of traditional inorganic or organic transistors. Their ability to operate at 3D macroscopic scales, combined with low-cost and scalable fabrication

techniques, positions them as a transformative technology to enable 3D programmable and living bioelectronics (Box 2).

We have discussed critical advances in materials design, fabrication strategies and device optimization, which provide a foundation for the development of hydrogel-based transistors capable of seamlessly interfacing with biological systems. Challenges remain in material development, fabrication and characterization, and these must be addressed to fully realize the potential of hydrogel transistors for broad bioelectronic applications.

Developing multifunctional semiconducting hydrogels with robust mechanical properties, excellent ion-to-electron conversion, and resilience under complex biological and environmental conditions remains a priority. Future research should focus on designing advanced polymer networks, integrating hierarchical structures, and exploring strategies to enhance response speed and stability without compromising tissue compatibility. Although low-cost and scalable manufacturing methods such as printing have proven effective, achieving precise control over device architecture, response speed and hysteresis at larger scales requires further refinement.

Co-optimization of materials, fabrication processes and operation mechanisms will be essential to meet the diverse demands of

bioelectronic applications. Realizing the full potential of hydrogel transistors will require the development of operando characterization platforms capable of monitoring multiple parameters simultaneously under biologically relevant conditions. These platforms will provide deeper insights into the fundamental mechanisms of hydrogel transistor operation and inform future device design.

Looking ahead, hydrogel transistors provide unprecedented opportunities in emerging fields relevant to 3D, synthetic, programmable and living bioelectronics. For example, in tissue-integrated biosensing, they offer the ability to create tissue-conformable active biosensors for real-time health monitoring and disease diagnosis. In biohybrid systems, they enable direct integration with cells and tissues, paving the way for developing hybrid biocomputing platforms and bioelectronic devices, such as brain—machine interfaces and artificial intelligence-embedded wearables. Furthermore, their adaptability in mimicking biological functions positions them as foundational components for developing biohybrid neuromorphic hardware for bio-integrated artificial intelligence, where electronics and biology merge to create intelligent, living systems.

Published online: 27 November 2025

References

- Brinkman, W. F., Haggan, D. E. & Troutman, W. W. A history of the invention of the transistor and where it will lead us. *IEEE J. Solid-State Circuits* 32, 1858–1865 (1997).
- Cao, W. et al. The future transistors. Nature 620, 501–515 (2023).
- Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1965).
- Bardeen, J. & Brattain, W. H. The transistor, a semi-conductor triode. Phys. Rev. 74, 230 (1948).
- Tybrandt, K., Larsson, K. C., Richter-Dahlfors, A. & Berggren, M. Ion bipolar junction transistors. Proc. Natl Acad. Sci. USA 107, 9929–9932 (2010).
- Atalla, M. M., Tannenbaum, E. & Scheibner, E. Stabilization of silicon surfaces by thermally grown oxides. Bell Syst. Tech. J. 38, 749–783 (1959).
- Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).
- 8. Muccini, M. A bright future for organic field-effect transistors. *Nat. Mater.* **5**, 605–613 (2006).
- 9. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).
- White, H. S., Kittlesen, G. P. & Wrighton, M. S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Chem. Soc. 106, 5375–5377 (1984).

This paper reports the first OECT.

- Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).
- Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).
- Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).
- Huang, W. et al. Vertical organic electrochemical transistors for complementary circuits. Nature 613, 496–502 (2023).
- Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).
- van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).
- Huang, Y. et al. Memristor-based hardware accelerators for artificial intelligence.
 Nat. Rev. Electr. Eng. 1, 286–299 (2024).
- Torricelli, F. et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods Primers 1, 66 (2021).
- Li, P. et al. n-Type semiconducting hydrogel. Science 384, 557-563 (2024).
 This paper reports an n-type hydrogel transistor for complementary inverters and logic circuits.
- Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
- Shin, Y. et al. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. Sci. Adv. 10, eadi7724 (2024).
- Bai, J., Liu, D., Tian, X. & Zhang, S. Tissue-like organic electrochemical transistors. J. Mater. Chem. C. 10, 13303–13311 (2022).
- Yin, J., Wang, S., Tat, T. & Chen, J. Motion artefact management for soft bioelectronics. Nat. Rev. Bioeng. 2, 541–558 (2024).
- Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

- Arwani, R. T. et al. Stretchable ionic–electronic bilayer hydrogel electronics enable in situ detection of solid-state epidermal biomarkers. Nat. Mater. 23, 1115–1122 (2024).
- Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).
- Berggren, M. & Richter-Dahlfors, A. Organic bioelectronics. Adv. Mater. 19, 3201–3213 (2007)
- Li, H., Liu, H., Sun, M., Huang, Y. & Xu, L. 3D Interfacing between soft electronic tools and complex biological tissues. Adv. Mater. 33, 2004425 (2021).
- Pitsalidis, C. et al. Transistor in a tube: a route to three-dimensional bioelectronics. Sci. Adv. 4, eaat 4253 (2018).

This paper reports a 3D transistor based on a PEDOT:PSS scaffold.

- Liu, D. et al. Increasing the dimensionality of transistors with hydrogels. Science 390, 824–830 (2025).
 - This paper presents the first 3D, macroscopic hydrogel transistor featuring a channel with millimetre-scale thickness.
- Saleh, A., Koklu, A., Uguz, I., Pappa, A.-M. & Inal, S. Bioelectronic interfaces of organic electrochemical transistors. Nat. Rev. Bioeng. 2, 559–574 (2024).
- Liu, D. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 7, 1176–1185 (2024).
- Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).
- Dargaville, B. L. & Hutmacher, D. W. Water as the often neglected medium at the interface between materials and biology. Nat. Commun. 13, 4222 (2022).
- Shi, J. et al. Active biointegrated living electronics for managing inflammation. Science 384, 1023–1030 (2024).
- Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).
- Sugiyama, H. et al. Microfabrication of cellulose nanofiber-reinforced hydrogel by multiphoton polymerization. Sci. Rep. 11, 10892 (2021).
- Verhulsel, M. et al. A review of microfabrication and hydrogel engineering for micro-organs on chips. *Biomaterials* 35, 1816–1832 (2014).
- 39. Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125-142 (2018).
- Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6, 720–725 (2011).
- Ahn, Y., Lee, H., Lee, D. & Lee, Y. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl. Mater. Interfaces 6, 18401–18407 (2014).
- Jing, X., Wang, X.-Y., Mi, H.-Y. & Turng, L.-S. Stretchable gelatin/silver nanowires composite hydrogels for detecting human motion. *Mater. Lett.* 237, 53–56 (2019)
- Shin, S. R. et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7, 2369–2380 (2013).
- Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).
- Li, J., Cao, J., Lu, B. & Gu, G. 3D-printed PEDOT:PSS for soft robotics. Nat. Rev. Mater. 8, 604–622 (2023).
- He, H. et al. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat. Commun. 14, 759 (2023).
- Li, L. et al. A robust polyaniline hydrogel electrode enables superior rate capability at ultrahigh mass loadings. Nat. Commun. 15, 6591 (2024).
- 48. Chong, J. et al. Highly conductive tissue-like hydrogel interface through template-directed assembly. *Nat. Commun.* **14**, 2206 (2023).
- Feig, V. R., Tran, H., Lee, M. & Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. *Nat. Commun.* 9, 2740 (2018).
- 50. Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).
- Zhu, T. et al. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52, 473–509 (2023).
- Zhang, S., Liu, D. & Wang, Y. From conducting hydrogel to semiconducting hydrogel. In 2023 Material Research Society Fall Meeting Abstract SB04.06.03 (2023).
 This work is the first to discuss the transition from a conducting hydrogel to a
- semiconducting hydrogel.
 Zhang, S. et al. Patterning of stretchable organic electrochemical transistors. Chem. Mater.
 329. 3126–3132 (2017).

This paper reports the first stretchable OECT.

Interfaces 14, 24729-24740 (2022).

- Nilsson, D., Kugler, T., Svensson, P.-O. & Berggren, M. An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators, B 86, 193–197 (2002).
- Zhang, S. et al. Room-temperature-formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Adv. Mater. 32, 1904752 (2020).
- This paper reports the first observation of semiconducting behaviour in hydrogels.

 56. Tseng, A. C. & Sakata, T. Direct electrochemical signaling in organic electrochemical transistors comprising high-conductivity double-network hydrogels. ACS Appl. Mater.
 - This paper reports a hydrogel transistor for glucose detection.
- Dai, Y. et al. Soft hydrogel semiconductors with augmented biointeractive functions. Science 386, 431-439 (2024).
 - This paper reports hydrogel transistors for augmented bioelectronic interfaces.

- Kuzina, M. A., Kartsev, D. D., Stratonovich, A. V. & Levkin, P. A. Organogels versus hydrogels: advantages, challenges, and applications. Adv. Funct. Mater. 33, 2301421 (2023).
- Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4ethylenedioxythiophene) and its derivatives: past, present, future. Adv. Mater. 12, 481-494 (2000).
- 60. Yang, C.-Y. et al. A high-conductivity n-type polymeric ink for printed electronics. Nat. Commun. 12, 2354 (2021).
- 61. Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271-277 (2022).
- Bießmann, L. et al. Monitoring the swelling behavior of PEDOT:PSS electrodes under high humidity conditions. ACS Appl. Mater. Interfaces 10, 9865-9872 (2018).
- Lang, U., Naujoks, N. & Dual, J. Mechanical characterization of PEDOT:PSS thin films. 63. Synth. Met. 159, 473-479 (2009).
- Tahk, D., Lee, H. H. & Khang, D.-Y. Elastic moduli of organic electronic materials by the buckling method. Macromolecules 42, 7079-7083 (2009).
- Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133-136 (2012). 65
- Foudazi, R., Zowada, R., Manas-Zloczower, I. & Feke, D. L. Porous hydrogels: 66. present challenges and future opportunities. Langmuir 39, 2092-2111 (2023).
- 67. Nilsson, D. et al. Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51-54 (2002).
- 68. Dai, Y. et al. Stretchable redox active semiconducting polymers for high performance organic electrochemical transistors. Adv. Mater. 34, 2201178 (2022).
- Su, X. et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34, 2200682 (2022).
- Gregorio, T., Mombrú, D., Romero, M., Faccio, R. & Mombrú, ÁW. Exploring mixed ionic-electronic-conducting PVA/PEDOT:PSS hydrogels as channel materials for organic electrochemical transistors. Polymers 16, 1478 (2024).
- Jo, Y. J. et al. Fibrillary gelation and dedoping of PEDOT:PSS fibers for interdigitated organic electrochemical transistors and circuits. NPJ Flex. Electron. 6, 31 (2022).
- Li, N. et al. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 381, 686-693 (2023).
- Li, T. et al. Monolithically integrated solid-state vertical organic electrochemical transistors switching between neuromorphic and logic functions. Sci. Adv. 11, eadt5186 (2025).
- Cavallo, A. et al. Biocompatible organic electrochemical transistor on polymeric scaffold for wound healing monitoring. Flex. Print. Electron. 7, 035009 (2022).
- Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping, Sci. Adv. 4, eaau2426 (2018).
- Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190-194 (2014).
- He, X. et al. Extreme hydrogel bioelectronics. Adv. Funct. Mater. 34, 2405896 (2024).
- Gkoupidenis, P. et al. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 78. 9, 134-149 (2024).
- Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting 79. polymers. Nat. Commun. 7, 11287 (2016).
- Keene, S. T., Rao, A. & Malliaras, G. G. The relationship between ionic-electronic coupling 80 and transport in organic mixed conductors. Sci. Adv. 9, eadi3536 (2023)
- 81. Yan, Z. et al. Highly stretchable van der waals thin films for adaptable and breathable electronic membranes. Science 375, 852-859 (2022).
- 82. Chi, S.-H. & Chung, Y.-L. Mechanical behavior of functionally graded material plates under transverse load-part I: analysis. Int. J. Solids Struct. 43, 3657-3674 (2006).
- 83 Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583-2590 (2010).
- Li, X. & Gong, J. P. Design principles for strong and tough hydrogels. Nat. Rev. Mater. 9, 84. 380-398 (2024).
- Lampe, M. et al. A biocompatible supramolecular hydrogel mesh for sample stabilization 85. in light microscopy and nanoscopy. Sci. Rep. 14, 29232 (2024).
- 86 Kang, J., Tok, J. B.-H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144-150 (2019).
- Liao, H. et al. Data-driven de novo design of super-adhesive hydrogels. Nature 644, 89-95 (2025).
- 88. Bovone, G., Dudaryeva, O. Y., Marco-Dufort, B. & Tibbitt, M. W. Engineering hydrogel adhesion for biomedical applications via chemical design of the junction. ACS Biomater.
- Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559-1570 (2021).
- Spolenak, R., Gorb, S. & Arzt, E. Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 1, 5-13 (2005).
- Yang, J., Bai, R., Chen, B. & Suo, Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 30, 1901693 (2020).
- Rao, P. et al. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 30, 1801884 (2018).
- Gao, Y. et al. A hybrid transistor with transcriptionally controlled computation and 93. plasticity, Nat. Commun. 15, 1598 (2024).
- George, R. et al. Plasticity and adaptation in neuromorphic biohybrid systems. iScience 23. 101589 (2020).
- Mougkogiannis, P. & Adamatzky, A. Biohybrid computing with proteinoids and algae. 95. Adv Sci 12 e06155 (2025)
- 96. Song, E. et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5, 759-771 (2021).
- Munjal, A., Philippe, J.-M., Munro, E. & Lecuit, T. A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524, 351-355 (2015).

- Tarabella, G. et al. A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties Chem. Sci. 6, 2859-2868 (2015).
- Abonnenc, M. et al. Teaching cells to dance: the impact of transistor miniaturization on the manipulation of populations of living cells. Solid-State Electron. 49, 674-683 (2005).
- 100. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1,
- 101. Yasue, H., Taguchi, T., Asoh, T.-A. & Nishiguchi, A. Cell-delivering injectable hydrogels with tunable microporous structures improve therapeutic efficacy for volumetric muscle loss. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202508278 (2025).
- 102. Baek, J., Song, N., Yoo, B., Lee, D. & Kim, B.-S. Precisely programmable degradation and drug release profiles in triblock copolyether hydrogels with cleavable acetal pendants. J. Am. Chem. Soc. 146, 13836-13845 (2024).
- 103. Li, H. et al. Programmable magnetic hydrogel robots with drug delivery and physiological sensing capabilities. Mater. Todav 87, 66-76 (2025)
- 104. Dong, C. et al. Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. Nat. Mater. 23, 969-976 (2024).
- Bay, L., West, K., Sommer-Larsen, P., Skaarup, S. & Benslimane, M. A conducting polymer artificial muscle with 12% linear strain, Adv. Mater. 15, 310-313 (2003).
- 106. Smela, E., Inganäs, O. & Lundström, I. Controlled folding of micrometer-size structures. Science 268, 1735-1738 (1995).
- 107. Ionov, L. Hydrogel-based actuators: possibilities and limitations. Mater. Today 17, 494-503 (2014).
- Friedlein, J. T., McLeod, R. R. & Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 63, 398-414 (2018).
- Bernards, D. A. & Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538-3544 (2007).
- Friedlein, J. T., Shaheen, S. E., Malliaras, G. G. & McLeod, R. R. Optical measurements revealing nonuniform hole mobility in organic electrochemical transistors. Adv. Electron. Mater. 1, 1500189 (2015).
- Kaphle, V., Paudel, P. R., Dahal, D., Radha Krishnan, R. K. & Lüssem, B. Finding the equilibrium of organic electrochemical transistors. Nat. Commun. 11, 2515 (2020).
- Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

This article defines μC^* as the material/system figure of merit of OECTs.

- Khodagholy, D. et al. High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).
- Bongartz, L. M. et al. Bistable organic electrochemical transistors: enthalpy vs. entropy. Nat. Commun. 15, 6819 (2024).
- Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 115. 580-586 (2019).
- Van De Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414-418 (2017).
- Rivnay, J. et al. High-performance transistors for bioelectronics through tuning of channel thickness, Sci. Adv. 1, e1400251 (2015).
- Bianchi, M. et al. Scaling of capacitance of PEDOT:PSS: volume vs. area. J. Mater. Chem. C. 118. 8 11252-11262 (2020)
- Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1, 41 (2021).
- 120. Lazanas, A. C. & Prodromidis, M. I. Electrochemical impedance spectroscopy—a tutorial. ACS Meas. Sci. Au 3, 162-193 (2023).
- Cao, J.-H., Zhu, B.-K. & Xu, Y.-Y. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membr. Sci. 281, 446-453 (2006).
- Barrande, M., Bouchet, R. & Denoyel, R. Tortuosity of porous particles. Anal. Chem. 79, 9115-9121 (2007)
- Dechiraju, H., Jia, M., Luo, L. & Rolandi, M. Ion-conducting hydrogels and their applications in bioelectronics. Adv. Sustain. Syst. 6, 2100173 (2022).
- Kim, Y., Kimpel, J., Giovannitti, A. & Müller, C. Small signal analysis for the characterization of organic electrochemical transistors. Nat. Commun. 15, 7606 (2024).
- Österholm, A. M., Ponder, J. F. Jr, De Keersmaecker, M., Shen, D. E. & Reynolds, J. R. Disentangling redox properties and capacitance in solution-processed conjugated polymers. Chem. Mater. 31, 2971-2982 (2019).
- Wang, H. & Pilon, L. Accurate simulations of electric double layer capacitance of ultramicroelectrodes. J. Phys. Chem. C 115, 16711-16719 (2011).
- Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597-1614 (2014).
- Hisamoto, D., Kaga, T., Kawamoto, Y. & Takeda, E. A fully depleted lean-channel transistor (DELTA)—a novel vertical ultra thin SOI MOSFET. In International Technical Digest on Electron Devices Meeting 833-836 (IEEE, 1989).
- 129. Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208-212 (2006).
- 130. Zhang, S. et al. Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors, APL, Mater, 3, 014911 (2014). Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic
- transistors, Nature 539, 411-415 (2016). Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable
- transistor array. Nature 555, 83-88 (2018). 133. Lundstrom, M. Moore's law forever? Science 299, 210-211 (2003).
- Waldrop, M. M. More than Moore. Nature 530, 144-148 (2016).

131.

- Kazazis, D., Santaclara, J. G., van Schoot, J., Mochi, I. & Ekinci, Y. Extreme ultraviolet lithography. Nat. Rev. Methods Primers 4, 84 (2024).
- Bai, J., Li, X., Zhu, Z., Zheng, Y. & Hong, W. Single-molecule electrochemical transistors. Adv. Mater. 33, 2005883 (2021).
- Shi, H. H. et al. Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023).
- Cai, Z. et al. Textile hybrid electronics for multifunctional wearable integrated systems. Research 8, 0779 (2025).
- Zhang, K. et al. Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat. Protoc. 19, 1557–1589 (2024).
- Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).
- Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. *Nat. Rev. Mater.* 6, 27–47 (2021).
- 142. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).
- Conti, S. et al. Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 8, 651–667 (2023).

Acknowledgements

S.Z. acknowledges the Collaborative Research Fund (C7005-23Y), the Early Career Scheme (ECS) (27214224), the General Research Fund (GRF) (17208623, 17200425) and the Theme-based Research Scheme (T45-701/22-R) from the Research Grants Council of the Hong Kong SAR Government.

Author contributions

S.Z. conceived this Perspective, acquired funding and supervised the work. S.Z., G.G.M., B.L., H.H., X.C., J.B. and D.L. contributed to the discussion of content. S.Z. and H.H. drafted the manuscript. All authors contributed to the Perspective and revision of the manuscript prior to submission.

Competing interests

The authors declare no competing interests.

Additional information

Peer review information *Nature Reviews Electrical Engineering* thanks Bozhi Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2025